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Abstract

The equality parameter as a highly aggregated index of an income distribution is complemented by
the finer measure of an equality function. Lorenz curves with linear equality functions are developed
and fitted to empirical data by squared error regression. The transition from equality parameters
to equality functions significantly reduces regression errors. Relative poverty lines are subscquently
introduced, computed approximately and their induced rankings of nations are investigated.
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1 Introduction

Income distributions and poverty measurement continue to receive attention in particular with markets
becoming ever more global. The two issues of income distribution and poverty measurement are typically
considered separately. The relative poverty notion of the European Union, which considers an individual
to be poor when falling short of 50% of the average income of the whole population, allows a certain
combined view. This has earlier been shown to lead to the Pareto class of Lorenz curves. This curve
type is generalized here by replacing the so-called equality parameter with functions, so-called equality
functions. These functions specify values of equality parameters that are allowed to vary with the income
level.

The transition [rom equality parameters to equality functions is facilitated by a differential equation.
The original form of this differential equation characterizes the Pareto distribution. Two generalizations
thereof are considered here which one being given in explicit and the other in implicit form.

The equality parameter is some sort of average over an equality function. The Lorenz curves belonging to
equality functions exhibit a significantly better fit to empirical data than the Lorenz curves belonging to
equality parameters. Also, Lorenz curves belonging to equality functions allow to reasonably operate with
relative poverty lines. Unless absolute poverty lines such as ”fraction of population with per capita income
of at most US 81 per day”, relative poverty lines indicate the fraction of the population whose income
falls short of 50% of the overall average income. Relative poverty lines are numerically computable.

The parameters of the Lorenz curves will be computed by regression in the usual sense of minimum
squared error fits. Since the regressions here are not computable in closed form, approximate fits are
computed by an enumeration scheme. It will turn out that continuous Pareto distributions lead to best
fits in most cases.

This work is organized as follows. equality functions and some of their features are formally introduced
in section 2. One class of Lorenz curves considered requires complete numerical handling saince it does
not admit an explicit formula. This makes regressions for curve fitting computationally cumbersome.
These regressions based on data for individual nations and for an aggregated world income are given in
section 3. Also, numerical approximations of relative poverty lines are computed. Section 4 draws a short
conclusion.



2 Approach

2.1 Equality function

According to the EU poverty definition, those individuals are considered poor whose income falls short of
half of the overall average income, comp. [EU], [FI]. When this view is extended from the poorest to all
others, i.e. when each income is compared to the average of all larger incomes, and when the proportional
constant may differ from 0.5 ("half”), the resulting Lorenz curve y(xz) satisfies the differential equation
y(z) =¢ %ﬁrﬂ, see [KPR]. The ratio ~I—I_L(I£l denotes the average of all incomes of the (1 — z) - 100%
richest of the population. Noteworthy, all Lorenz curves are normalized to attain values between zero
and one so that the sum of all incomes equals unity. On the scale of the derivative unity amounts to the
average value of all incomes. The constant value ¢ is called the equality parameter which attains values
between zero and one.

To provide for more generality we consider the differential equation

1 —y(z)
l—=zx

y'(z) = £(2)

over the domain 0 € z < 1. The function &(z) : [0, 1] — (0, 1] is assumed to be continuous over its domain.
This function is called equality function. The derivative of each Lorenz curve that satisfies the differential
equation is bounded from below by its equality function meaning that y'(z) > e(z) for all z € [0, 1). This
lower bound is always attained at the lower bound of the income scale meaning that y'(0) = £(0).

For constant functions (”equality parameters”) as well as for discontinuous but intervalwise constant
functions the differential equation has a closed form solution. For the constant function g(z) = ¢ the
solution is given by yp(z) = L — (L — z)*. The absolute income distribution belonging to this Lorenz curve
is of the Pareto type and, thus, the Lorenz curve itself is here understood to be of the Pareto type. This
slight deviation from standard terminology will simplify the subsequent notation.

For intervalwise constant equality functions the solution is intervalwise of the Pareto type with continuous
"connections”. For more general equality functions, even for linear functions () = &; + (¢3 —€1) z asin
figure 1 the differential equation appears to have no closed form solution.

Figure 1: Increasing linear equality function and equality parameter.

The solution of the differential equation is denoted as implicit Pareto distribution yp(z). Though it
generalizes the Pareto distribution, it is different from other forms of generalized Pareto distributions
which have different domains and admit closed form representations, comp, [EmKIMi].



The function y.p(x) =1 — (1 — 2)*{®), called continuous Pareto distribution, is a straightforward gener-
alization of the ordinary Pareto distribution. It satisfies the differential equation

/ 1-yz) . 1-y(z)
Y(z) = E(I)ﬁ—'—s(x) i (1-z)In(l - 2).
This differential equation includes the derivative of the equality function and other terms and thus is not of
an immediate form that allows the equality function to be considered as proportional factor of the average
of all larger incomes. Thus, it is considered for approximations. These approximations show a consistent
over- or underestimation for monotone equality functions as given in section 2.3.1. For non-monotone
equality functions no consistent deviation from the true values is known.

It appears that there is no differential equation with closed form solution that slightly” generalizes the
original case; either the differential equation becomes significantly more complicated (continuous Pareto
distribution) or the function itself is more complicated (implicit Pareto distribution), Both the continuous
and the implicit Pareto distributions have their individual equality functions which generally differ.

2.2 Related work

The ordinary Pareto-type Lorenz curve has been proposed, among others, by Rasche et al. [Ra], even
in the more general form y(z) = (1 — (1 - 1:)“}%‘ 0 << 1,8 < 1. This type of curve apparently
was motivated by insufficient curvature features of other types of Lorenz curves. Driven by empirical
motivation, g-distributions y(z) = & — J27 (1 — z)* and quadratic income distributions y(z) = %(b:c +
e + Vmz? 4+ nz + e?) were considered, see [Da]. An overview on parametric Lorenz curves is provided
in [ChoGri]. Quite a few parametric Lorenz curves were adopted from probability distribution functions,
see for example [RySl, p. 294].

Variations of the Rasche curves like y(z) = z%(1=(1—2z)?), @ > 0,0 < 8 < 1, and the exponential curves
y(r) = e::_“ll, k& > 0, have also been proposed, see [Che]. Parametric Lorenz curves are complemented by
non-parametric curves such as kernel estimates and by quantile ratios, see [Gi]. The latter is motivated
by simplicity issues.

The differential equation leading to the ordinary Pareto distribution can be modified to lead to other
one-parametric income distributions. This requires convexity analysis combined with an overconstraining
approach [K] and results in Lorenz curves which exhibit a better fit to empirical data than the Pareto
distribution [KR]. However, the involved parameters do no longer allow an easy interpretation as equality
parameter.

A recent network approach for a finite set of economical agents concludes that the far tail or heavy tail
of absolute wealth is approximately Pareto-distributed, see [BouMe]. This result from econophysics is
coherent with the present approach.

2.3 Dominance properties
2.3.1 Under- and overestimation

For monotone equality functions Lhe continuous Pareto distribution can be considered from the viewpoint
of the wrong differential equation which is the differential equation of the implicit Pareto distribution.
The continuous Pareto distribution satisfies the inequalities

1 - ycp(‘E}

Y resp. dp(n) < ()

Yer(z) > &(2)
for increasing resp. decreasing equality functions. Assuming that Lorenz curves of the continuous Pareto-
type are the true distributions leads to values of an equality function being too small in case the equality
function is increasing. This means that when expressing a particular income as a fraction of the average
of all larger incomes, this fraction is underestimated.



2.3.2 Lorenz dominance

An important relation between Lorenz curves is given by a partial order resulting from non-intersection.
This order, called Lorenz dominance, amounts to the dominating curve lying below the other over the
whole domain, comp. [Lit]. Lorenz dominance is nothing but stochastic dominance when Lorenz curves
are considered as probability dsitribution functions. The ordinary and the continuous Pareto distribution
are related for increasing equality [unctions by the dominance relations

1—-(1—z)f® <1 (1—-2)F® <1 (1 -z,
For decreasing equality functions the relations become
1-(1—af <1=(1-2)® <1—(1-2)®,

The continuous Pareto distribution is thus sandwiched by ordinary Pareto distributions in the sense of
Lorenz dominance.

Lorenz dominance preserves comparability of equality functions for continuous as well as for implicit
Pareto distributions. This means that whenever two equality functions do not intersect, then their Lorenz
curves do not intersect. For the continuous Pareto distribution this is formally denoted as the implication

er(z) < es(z) forallze[0,1] = 1 — (1 —2)1®) <1 - (1~z)2*) for all 2 € [0, 1].

This kind of dominance relation can be demonstrated easily. Comparability of equality functions for
the implicit Pareto distribution is more complicated to derive. A numerical approach such as given in
section 2.4 allows to deduce the implication

e1(z) < ea(z) for all 2 € [0,1] = Yip,e,()(2) € Yipea( () for all z € [0,1].

Interestingly, 2 common equality function implies a dominance relation between the continuous and the
implicit Pareto distribution. The relation is given for an increasing resp. decreasing equality function by

yir(z) € yep(z) resp. yip(2) < yer(z).

These inequalities are motivated — not formally derived - by comparing the right hand sides of the
corresponding differential equations. The intricate deduction of these inequalities is based on uniformly
approximating the equality function by monotone step functions and comparing the resulting Lorenz
curves in explicit form, This argument is omitted here.

The dominance relation between the continuous and the implicit Pareto distribution has an implication
for empirical analysis. This implication is illustrated only for increasing equality functions as this is the
prevailing monotonicity direction on real data, see below. Whenever distributions of the two types are
fitted to the same data, the implicit Pareto distribution must be lifted in comparison to the continuous
distribution when starting out from a common equality function. Lifting the distributions is achieved
by lifting the equality Function as specified by the foregoing comparability relation. Thus, it can be
expected that values of equality functions of the implicit Pareto distribution are larger than those of the
continuous Pareto distribution when approximating the same empirical data. This will turn out to be
true in section 3.2.

2.4 Numerical solution

Linear equality functions will be considered from now on only. The resulting Lorenz curve is then two-
parametric. The parameters are the lower equality parameter ¢; and the upper equality parameter &g,
The implicit Lorenz curve can be given approximately by a numerical solution of the discretized ordinary
differential equation
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where 0 = zg < 2y < ... < 1z, =1 and y(0) = 0. Approximating the differential at z; by the symmetric
- ;l:g :_l is infeasible here since already the case £, = ¢ leads to non-differentiability

at the right interval boundary. Thus, the functional value at the right interval boundary should not go
into approximations of the derivative. The differential at z; is only approximated from the left.

difference ratio ¥

The linear system for Lorenz curve approximation can be solved by forward computation resulting in the
values y;p., ¢,(2;). The values lie on an increasing and convex function for all feasible parameter values.
Thus, the function values can be considered as sample values of a valid Lorenz curve.

3 Empirical findings

3.1 Regression approach

The parameters of a linear equality function are identified by a standard least squares approach

min 2 : (yip.il.Ez[mf)_yi)g
€1.,82
ENIA

with support set 2’ C {zg,...,z,}. The value y; denotes the value of the empirical Lorenz curve given
at z;. The empirical values must be given externally over the whole support set. Both the lower and
the upper equality parameter vary over the same, finite candidate set. The candidate set for the two
parameters being the same gives enough freedom to allow the best fit equality function to be increasing,
decreasing or constant,.

The regression approach for the continuous Pareto distribution is given in the analogous form

. 2
min Z (YePey o (zi) = ui)®,
EN-VA

with the regression function being explicitly given as yepe,.e,(x) = 1 — (1 — p)srHea—e1)z,

No closed form solution of either of the foregoing regression problems is known, not even in the simplified
case of an equality parameter rather than an equality function which means that the regression variables
are set equal to ¢; = €5 and vary in common through the candidate set.

3.2 Linear equality functions of nations

Data compiled by the world bank [W] were used to compute best fit linear equality functions according
to the foregoing regression scheme for the continuous and the implicit Pareto distribution. The settings
Z2'=1{.1,.2,4, 6,38, 9} and r; = 1‘—0 for i = 0,...,10 = n were used. The regression parameters g; and
¢ varied independently from 0 to 1 with a step size of .01. The regression data are given in the following
table.



[ Nation [ z, n T2 ¥ | %3 ys | %4 Ys | %5 ys | Ts  Ys |
Austria 0.1 0044102 0.104 |04 0.252 (06 043708 0.666 |09 0.807

Brazil 0.1 0.009)|0.2 0025|04 008 |06 018 |08 0.363 |09 0.524
Canada 0.1 0028 |02 007504 020406 0376)08 0.606|09 0.762
China 0.1 0.022 (0.2 0.055({04 0.153 |06 0.302[08 0.525]|09 0.691

Czech Rep. || 0.1 0.043 [ 0.2 0.103 | 0.4 0.248 | 0.6 0.425| 08 0.642 | 0.9 0.776
Denmark 0.1 00302 0096|044 0245 (06 0428 | 08 0.655 0.9 0.795
Finland 0.1 0.042]02 01 |04 0242 (06 0418 |08 064109 0.784

France 0.1 0.028 |02 007204 0.198|06 037 |08 0598 |09 0.749
Germany 0.1 003702 009 |04 022506 04 |08 0.629|09 0774
Gr. Britain || 0.1 0.026 |02 0.066 |04 0.181 |06 0.344 (08 0571109 0.727
Greece 0.1 003 |02 007504 0.199 |06 0368 ]| 0.8 0.596 |09 0.747
Hungary 0.1 0039102 0088 |04 021306 037908 060209 0.752

India 0.1 0.035]02 008104 0197 |06 0347 |08 054 |09 0.665
[taly 0.1 003502 008704 0227]06 0408]|08 063709 0.782
Japan 0.1 0.048 [ 0.2 0.106 (04 0.248 | 0.6 0424 | 0.8 0.644 | 0.0 0.783

Korean Rep. || 0.1 0.020 [0.2 0.075 |04 0.204 0.6 0378]|08 0.607 |09 0.757
Mexico 0.1 0.014]02 0.036]04 0108 |06 0226|08 0418|09 0572
Netherlands [} 0.1 0.028 | 0.2 007304 02 |06 0372|108 06 |09 0.749
Nigeria 0.1 0016]02 0.044 |04 0.126 |06 0.251 |08 0444 (0.9 0592
Norway 0.1 0.041]02 01 |04 024306 0422|08 0646 |09 0.788
Poland 0.1 0.03 |02 0.077 |04 0.203|06 037 |08 0.591 (09 0737
Portugal 0.1 0.031][02 0.073[04 0.189 |06 0348 ;0.8 0.566|0.9 0.716
Russian Fed. || 0.1 0.017 | 0.2 0.044 [ 0.4 0.13 | 0.6 0.263}0.8 0.464 |09 0.613
S. Africa 0.1 0.011]02 0020]04 0.084 |06 0.176 |08 0.353]09 0.541
Slovakia 0.1 0.05L]0.2 011904 0.277 |06 0463 |08 0.685(09 0.818
Spain 0.1 0.028 0.2 0.075|04 0.201({06 0.371]|08 0598|095 0.748
Sweden 0.1 0.037]0.2 0.096 |04 0.241 |06 0422|08 0654|099 0.799
Switzerland |[ 0.1 0.026 [ 0.2 0.069 {04 0.196 | 0.6 0.369 | 0.8 0.598 [ 0.9 0.748
USA 0.1 0015(02 0048 |04 0.153 |06 0313 )08 0548 |09 0.715
Venezuela 0.1 0.013 |02 0037]04 0.121 |06 025708 0469 |09 0.63

The equality parameters according to the ordinary Pareto distribution for theses data have been computed
earlier, see [KPR]. Their listing is included for comparability to linear equality functions. In all cases, the
best fit equality functions turn out to be increasing. This means that the poor are nol only absolutely
poaorer than the rich - which is a tautclogy — but also relatively; a lower income corresponds to a lower
fraction of the average of all incomes above.

The equality parameters are approximately equal or lie above the mean of the lower and the upper equality
parameters of the implicit Pareto distribution. The average of upper and lower equality parameter of the
continuous Pareto distribution consistently underestimates the equality parameter. This applies to all
nations investiaged. All parameter values are listed in the following table.
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Nation Pareto distribution | continuous Pareto distribution | implicit Pareto distribution
£ €1 ) €1 €2
Austria 0.65 0.45 0.74 0.47 0.88
Brazil 0.27 0.03 0.35 0.08 0.47
Canada 0.55 0.29 0.66 0.33 0.81
China 0.45 0.18 0.54 0.22 0.69
Czech Rep. 0.62 0.47 0.68 0.49 0.77
Denmark 0.63 0.41 0.73 0.45 0.86
Finland 0.61 0.43 0.69 0.46 0.80
France 0.54 0.28 0.64 0.33 0.78
Germany 0.59 0.37 0.68 0.41 0.80
Gr. Britain 0.50 ; 0.24 0.60 0.29 0.74
Greece 0.54 0.30 0.63 0.34 0.77
Hungary 0.52 0.36 0.63 0.39 0.74
India 0.47 0.38 0.50 0.41 0.53
Ttaly 0.59 0:36 0.70 0.40 0.84
Japan 0.62 0.46 0.65 0.49 0.78
Korean Rep. 0.55 0.30 0.65 0.34 0.80
Mexico 0.33 0.10 0.40 0.15 0.50
Netherlands 0.54 0.29 0.64 0.34 0.78
Nigeria 0.35 0.15 0.42 0.20 0.51
Norway 0.62 0.43 0.70 0.46 0.82
Poland 0.53 0.33 0.61 0.35 0.74
Portugal 0.50 0.29 0.58 0.33 0.65
Russian Fed. 0.37 0.16 0.44 0.20 0.55
S. Africa 0.28 -0.01 0.36 0.06 0.49
Slovakia 0.69 0.53 0.77 0.56 0.86
Spain 0.54 0.29 0.64 0.34 0.77
Sweden 0.63 0.40 0.73 0.43 0.88
Switzerland 0.53 0.28 0.64 0.32 0.79
USA 0.47 0.14 0.59 0.19 0.78
Venezuela 0.38 0.10 0.47 0.15 0.61

The interpretation of these numbers is illustrated for the implicit Pareto distribution in case of Germany.
The income of the poorest approximately equals 0.41 x 100% = 41% of the overall average income. Strictly,
this is an infeasible statement since the empricial data which were used for regression do not cover ”the”
lowest and “the” highest income in the population. The income at the 30% quantile approximately equals
(0414 (0.80 — 0.41) 0.3) x 100% = 52.7% of the average of the 70% largest incomes of the nation.

A mere equality parameter above 0.5 might suggest non-existence of poverty according to the relative
poverty notion of the Eropean Union. The shortfall of an equality function below the value of 0.5 at
the lower end of the income scale and the slope of the equality function indicate the extend of relative
poverty. Based on the regression data, only one nation (Slovakia) - not even one of the Scandinavian
nations - appears to be free of relative poverty. This issue is made precise by relative poverty lines, see
section 3.3.

The nation with largest difference between upper and lower equality parameter (slope of the equality
function) both [or the continuous and for the implicit Pareto distribution is USA. The nation with
smallest difference between upper and lower equality parameter both for the continuous and for the
implicit Pareto distribution is India. It is remarkable thal these two nations exhibit the extremes since
their ordinary equality parameters are equal.

The equality function of the implicit Pareto distribution lies above the equality function of the continuous
Pareto distribution for all nations. This is in line with the dominance relation between the two distribu-
tions, comp. section 2.3.2. Not only values but also the slopes of the equality functions are larger under
implicit Pareto distributions than under continuous Pareto distributions.



The regression error of best fits decreases drastically when replacing the one-parametric Pareto-type
curves with the two-parametric continuous and implicit Pareto-type Lorenz curves. This is illustrated by
the subsequent table,

Nation Regression error
Pareto distribution | continuous Pareto distribution I implicit Pareto distribution

Austria .00378 .0000428 .000130
Brazil 00902 .000105 .000015
Canada 00677 .0000794 .000236
China .00842 0000419 000049
Czech Rep. .00206 000121 .000257
Denmark .00423 000175 .000365
Finland .00301 .0000463 .000125
France .00643 .0000743 000282
Germany .00441 .0000311 000147
Gr. Britain .00693 0000253 .000164
Greece .00586 .0000356 .000192
Hungary .00371 9.76-10"° .0000573
India .00897 .000241 .000356
Ttaly .00516 .0000854 .000272
Japan 00209 0000177 .0000734
Korean Rep. 00627 0000797 .000281
Mexico .00668 .0000178 .000092
Netherlands 00618 .0000847 .000313
Nigeria 00496 .0000313 .000159
Norway 00328 0000604 .000164
Poland .00449 .0000360 .000438
Portugal .00439 .0000262 000134
Russian Fed. .00584 .0000370 000219
S. Africa .01070 000913 .000309
Slovakia .00206 0000635 .000144
Spain .00584 0000827 .000261
Sweden 00481 .0000810 000198
Switzerland 00693 .0000115 000375
USA 01197 .0000504 000230
Venezuela .00942 .0000156 .000191

The regression error of the continuous Pareto distribution is consistently smaller than that of the implicit
Pareto distribution with the exceptions of Brazil and South Africa. Whenever the regression error is
smaller, it is so by about one order of magnitude. The regression error of the two-parametric continuous
Pareto distribution is also smaller than those of several one-parametric distributions that were obtained
from modifying the equality parameter by an overconstraining method, see [KR]. The regression error of
the implicit Pareto distribution is consistently smaller than that of the ordinary Pareto distribution and,
again, it is so by abont one order of magnitude.

3.3 Relative poverty lines

The [raction of a population whose income falls short of 50% of the overall average income can be
considered as the relative poverty line according to the EU poverty definition. The relative poverty
line is given as the solution zsq of the equation y'(rs0) = 0.5. 'or the continucus and implicit Pareto

distributions the relative poverty lines can be computed by the respective formulas

05 = Yepe, e, (250)



s (I - x50)51+(€1—€z)$50—1 . ((l . -7350) in(l - 1;50) q (51 - 52) + (51 + (52 g El) 150))
and

0.5 = UYipe,.,(250) = (e1+ (€2~ &1) zs50) M
’ — Ts50
The relative poverty line of a continuous Pareto distribution can be approximated by successive division
of the function domain and selecting that half of the present interval where the derivative y.p, . ()
attains the value 0.5 ("regula [alsi”). The relative poverty line of an implicit Pareto distribution can be
approximated from the support vertex z; at which the left and right slopes sandwich the value 0.5. This
support vertex is given by
y:ﬁs;,:; (1?,‘—-) < 0.5 < y‘;P‘Cllh‘g(z’._i-)'

The approximation then is

) 0'5—3};}’,51,5;(1”'_)
rsp = Ii-1 + Ure @t — Vpr o (5] (Trap=ziog).
Alternatively, as done here, approximations can be obtained by sampling the domain at constant step
size and selecting the argument for which the Lorenz curve derivatives come closest to the target value
0.5. A step size of 0.001 was chosen for the continuous Pareto distribution and a step size of 0.01 was
chosen for the implicit Pareto distribution. In all computations the lower and upper equality parameters
are chosen to be the best fit values obtained in section 3.2. The resulting relative poverty lines are given
in the subsequent table.

Nation Relative poverty line
continuous Pareto distribution | implicit Pareto distribution

Slovakia 0.000 0.00
Czech Rep. 0.043 0.02
Austria 0.058 0.04
Japan 0.061 0.02
Norway 0.084 0.06
Finland 0.086 0.07
Denmark 0.095 0.07
Sweden 0.103 0.10
Germany 0.137 0.13
Italy 0.139 0.14
Hungary 0.161 0.17
Poland 0.188 0.21
Korean Rep. 0.189 0.21
Canada 0.190 0.21
Greece 0.196 0.21
Netherlands 0.197 0.21
Spain 0.197 0.21
Portugal 0.197 0.26
France 0.202 0.22
Switzerland 0.202 0.23
India 0.213 0.21
Gr. Britain 0.235 0.27
USA 0.271 0.32
China 0.283 0.34
Venezuela 0.339 0.41
Russian Fed. 0.347 0.41
Nigeria 0.363 0.43
Mexico 0.385 0.46
S. Africa 0.410 0.51
Brazil 0.420 0.51




Values almost coincide in some cases. When they differ, no approximation of the relative poverty line
can be guaranteed to be closer to the true value than the other approximation and no systematic over-
or underestimation is known. Value discrepancies result from the derivatives of the Lorenz curves being
fAlat towards the lower end of the curves,

The table is sorted by increasing poverty lines of the continuous Pareto distribution. Ties such as between
France and Switzerland are broken in favour of increasing poverty lines of other distribution. Remaining
ties such as between the Netherlands and Spain are broken arbitrarily.

The relative poverty lines of the implicit Pareto distribution tend to vary more than those of the contin-
uous Pareto distribution. At the low end of the poverty scale the implicit Pareto distribution has smaller
poverty lines than the continuous Pareto distribution which is illustrated by the first nine entries of the
foregoing table. When poverty increases, the relation reverses with the exception of India.

3.4 World income distribution

The individual income distributions of various nations can be aggregated to the world income distribtion
when ”weighted” by national gross incomes and population sizes. This results in the following regression
support for more than 150 nations of the world, see [StK].

[ "Nation” [ =3 TS y2 | o3 Y3 z4 Ys | Ts s | =s vs |
r World ” 0.1 0.0028 | 0.2 0.009 [ 04 0.023 |06 0.0501 ! 0.8 0.1261 ; 0.9 03133 ”

Regressions as for individual nations result in the following best fit values.

"Nation” || Pareto distribution | continuous Paretb distribution | implicit Pareto distribution
3 €1 £9 2! £2
| World [ 0.12 0.00 0.15 [ 0.00 0.23 |

The lower equality parameter of 0.00 for the continuos and implicit Pareto distributions must not be
considered as zero, but, within the numerical precision of 0.01, the true values are closer to 0 than to
0.01. The regression errors of the three Pareto distributions fitted to the world data are as follows.

"Nation” Regression error
Pareto distribution | continuous Pareto distribution | implicit Pareto distribution
| World 0123 .0055 0037

The smallest regression error is attained by the implicit Pareto distribution in analogy to few cases of
the nation analysis, namely Brazil and South Africa.

4 Conclusion

Linear equality functions have been developed and fitted to real data. All in all, the continuous Pareto
distributions exhibits a better fit than the implicit Pareto distribution. Relative poverty lines are derived
for both distributions with no consistent over- or underestimation of one distribution by the other. Future
investigations will have to address non-linear equality functions.
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