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Abstract

A calculus based on one-parametric Lorenz curves is shown to enable versatile computations over
income distributions. These computations focus on empirical as well as on conceptural issues. One
empirical issue is the computation of the so-called equity parameter from support points of any Lorenz
curve. One conceptual issue is a merger computation that allows for a novel separation of a population
into a rich and a poor constituent. This separation allows that the two constituents mix rather than,
conventionally, be divided by a given threshold value.
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1 Introduction

Quantitative analysis of income distribution has regained attention in the last years in the context of
sustainable pathways into the future. In the following, the definition of poverty by the European Union
where an individual is considered to be poor when falling short of 50% of the average income of the whole
population, is shown to lead to a differential equation as well as to an equivalent functional equation
on conditional expectations. The solutions of the differential equation allow to deal with a variety of
empirical as well as systems-theoretical issues. These issues do not refer to poverty alone but to the whole
income distribution and they represent the abstract core of work which has been pursued over some years
[KPR].

The solutions of the underlying differential equation form a one-parametric class of Lorenz curves. This
allows to compute quantiles, cumulative and average incomes of population segments, minimum income
levels and the like. All these will be expressed as a function or computing scheme of the one parameter
which is denoted as equity parameter. One or the other of the present issues could be addressed by other
approaches. But uniformity is achieved by a calculus which is based on the equity parameter. This is
pivotal to the present report.

All computations are intended to be simple and straightforward in order to allow for closing the gap
between conceptual and empirical issues. With the exceptions of regressions and population merger, the
computations can be executed in closed form. Whenever this is not the case, numerical approximations
must be resorted to. The computation of the joint Lorenz curve for the merger of two populations each
having its own Lorenz curve is facilitated by a convolution-like operation.

The remainder of this paper is organized as follows. A certain type of one-parametric Lorenz curves
is derived in a concrete and in a more abstract way in sections 2 and 3 respectively. This leads to
the so-called equity parameter which serves as an inequality index of the income distribution. Equity
parameters are computed by curve fitting to empirical data in section 4. A relation to another index for
income distributions, the Atkinson index, is established in section 5. The celebrated issue of whether any
relation might hold between growth and income distribution is touched in section 6. The evenly important
issue of an optimal level of distributional inequality is investigated from a middle class perspective in
section 7. Section 8 deals with a somewhat speculative comparison of high income groups from nations
with either very uneven or more balanced income distributions.
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Section 9 assumes that a society is split into two subsocieties each having its own income distribution.
The two distributions are typically interleaved which means that each accounts for incomes that are
higher than some incomes from the other distribution. Such situations result from the merger or from
alliance-building of two nations. The perspective taken here is that such a fusion has occured and that
a split into two subsocieties is considered in retrospect. This kind of subsociety analysis is distinct from
any split of income groups according to a given income threshold.

The similarity between the subsociety distributions in terms of average income and equity parameter as
well as between the size of each subsociety describes the homogeneity of the overall income distribution.
The findings of this approach are the conceputally and computationally most difficult results of the
proposed calculus. But following the empirical results only (section 9.2) allows to skip their derivation
(section 9.1). Moreover, the sections after section 2 are independent to a great extent.

2 Differential equation

2.1 Approach

The cumulative distribution of income or consumption of a nation is described by a Lorenz curve F (x),
x ∈ [0, 1]. The cumulative income is related to individual incomes by the derivative of the Lorenz curve.
This can be seen by considering an individual at income rank x who is one with 100·x% of the population
earning less and 100% - 100·x% of the population earning more than him. This individual adds F ′(x) to the
values of the Lorenz curve whenever the curve is absolutely continuous meaning that F (x) =

∫ x
0
F ′(u)du;

the latter is assumed throughout. Unless otherwise stated, the total income of a nation is normalized to
unity which means that F (1) = 1.

The foregoing consideration is related to the relativity concept of poverty of the European Union. Ac-
cording to this notion, an individual of some nation is poor if his income falls short of 50% of the average
per capita income of that nation [EU], [FI]. Instead of considering only the poorest, any individual’s
income will be compared to the average of all larger incomes. Moreover, the actual fraction of individual
vs. average income need not be 50% but some other, yet unknown value.

Comparing individual incomes to average incomes leads to a differential equation [KPR]. The rationale
is as follows. The segment [0, x] of the population receives its proportion F (x) of income. The remaining
income 1−F (x) is distributed among the remaining fraction of the population which is 1−x. The average
income of all richer individuals thus equals 1−F (x)

1−x . An individual at income rank x is supposed to have a
constant fraction ε, ε < 1, thereof. Combining this with the previous fact that an individual contribution
to the Lorenz curve is nothing but the curve’s derivative, results in the linear inhomogenous differential
equation

F ′(x) = ε · 1− F (x)
1− x

.

All solutions of this differential equation that satisfy the normalization conditions F (0) = 0 and F (1) = 1
are given by the manifold of Pareto distributions Fε(x) = 1 − (1 − x)ε. The parameter ε whose values
range between zero and one is called equity parameter.

The density of a Pareto Lorenz curve is fε(x) = F ′ε(x) = ε (1 − x)ε−1 so that fε(0) = ε. The intuition
of the last equation is that the theoretically smallest of all incomes is exactly at the level of the equity
parameter. In absolute terms this means that the theoretically smallest income equals the average per
capita income multiplied by the equity parameter.

Distributional inequality of Pareto Lorenz curves decreases in the equity parameter both in the sense of
Lorenz dominance and Gini index. The first means that Lorenz curves of the Pareto type do not intersect
for different parameters except at the endpoints and the curve with smaller parameter lies below the
curve with larger parameter. The second means that the Gini index of Pareto Lorenz curves is decreasing
in the equity parameter

Gini-Index = 2 ·
∫ 1

0

x− Fε(x)dx =
1− ε
1 + ε

.
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As an alternative to Lorenz curves, income distributions can be described by histograms or random
variables which either denote absolute incomes or multiples of the average income. The latter means
that value one amounts to the average income, value two amounts to twice the average income etc. Let
W denote such a random variable. The foregoing differential equation then transforms to a functional
equation of conditional expectations. This functional equation is

w = ε · E(W |W ≥ w)

for all w ∈ [ε,∞). In strict analogy to the differential equation, the equity parameter appears as multiple
of an expression of all incomes that lie above some income level which is specified by the left side of
the equation. Whenever the random variable has a density function, the functional equation obviously
transforms to the integral equation

w = ε ·
∫∞
w

uϕ(u) du∫∞
w

ϕ(u) du

for all w ∈ [ε,∞).

2.2 Related work

The differential equation approach can be variated to lead to other one-parametric as well as to two-
parametric Lorenz curves where the equity parameter is replaced by a so-called equity function. The
current type of Lorenz curve and the more general form F (x) = (1 − (1 − x)α)

1
β , 0 < α < 1, β ≤ 1 has

also been investigated by Rasche et al. [Ra]. This type of curve apparently was motivated by curvature
features. Driven by empirical motivation, β-distributions F (x) = x − ϑxγ (1 − x)δ as well as quadratic
income distributions F (x) = 1

2 (bx + e +
√
mx2 + nx+ e2) were also considered [Da]. An overview on

parametric Lorenz curves is given in [ChGr] and parametric Lorenz curves that were merely adopted
from probability distributions are treated in [RySl].

Modifications of the Rasche curves such as the Lorenz curves F (x) = xα(1− (1−x)β), α > 0, 0 < β ≤ 1,
and exponential curves F (x) = eκ x−1

eκ−1 , κ > 0, have also been proposed, see [Che]. In addition to parametric
Lorenz curves, non-parametric approaches such as kernel estimators and quantile ratios [Gi] have been
proposed.

An interesting class of inequality indices is formed by measures that require other than income or con-
sumption data like entropy measures and the Atkinson index [Lit]. The latter needs an external param-
eter. A relation between this parameter and the equity parameter will be established below. A survey of
inequality measurement is given in [Sil].

A recent network approach [BouMez] for finite many economical agents and a similar systems dynamics
approach [NiSo] both claim that the heavy tail of absolute wealth is approximately Pareto-distributed.
This result from ”econophysics” is coherent with the present assumptions which can be reformulated as
the income distribution adhering to a so-called power law. Here, the validity of the power law is assumed
throughout the whole distribution.

3 Self-similarity

A completely different derivation of the presently investigated type of Lorenz curves stems from self-
similarity. Though it may seem intuitively obvious, the formal concept of self-similarity for income analysis
is less clear. In particular, any relation to self-similarity as used in non-linear dynamics, in particular in
so-called chaos theory, is believed to be misleading here. The reason is that non-linear dynamics considers
more complicated phenomena related to iteration schemes or partition processes as for space-filling curves
and the like.

Self-similarity, today, is a popular concept that appeals to scientific imagination but may severly lack
clarity. In particular, self-similarity can be vaguely identified with or be very clearly related to other
issues like power laws; see [LADW] for a rigorous treatment of the latter. Self-similarity attains its highest
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potential when being tailored to a specific problem rather than being stylized as a single, universal notion
that is probably loaded with some mystics. Here, a particular notion of self-similarity for Lorenz curves
is given.

Income distributions are often described by Lorenz curves. Thus, it is a straightforward quest to directly
relate self-similarity to Lorenz curves. This relation will be established by truncation and normalization
operations.

The Lorenz curve F (x) of a whole population allows to derive the Lorenz curve of any fixed population
segment [x0, 1], called the rich segment, by rescaling the population fraction – which means rescaling
the argument – and by normalizing to the cumulative income of the rich segment. This results in the
truncated Lorenz curve

F x0(x) =
F (x0 + x (1− x0))− F (x0)

1− F (x0)

for 0 ≤ x ≤ 1.

3.1 Self-similarity by pointwise equality

The original Lorenz curve is understood to be self-similar if all truncated Lorenz curves are equal to the
original curve so that

F x0(x) = F (x)

for 0 ≤ x ≤ 1 and 0 ≤ x0 < 1. This functional equation for self-similarity is illustrated in figure 1. The

-
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Figure 1: The dashed box and the enclosed section of the Lorenz curve (left) are rescaled to the unit
square (right). Self-similarity requires the complete curve F (x) and the curves F x0(x) to be equal for all
truncation values 0 ≤ x0 < 1.

Pareto Lorenz curves from section 2 are self-similar which is easily verified as follows.

F x0
ε (x) =

Fε(x0 + x (1− x0))− Fε(x0)
1− Fε(x0)

=
1− (1− x0 − x (1− x0))ε − 1 + (1− x0)ε

1− 1 + (1− x0)ε

= 1− (
1− x0 − x (1− x0)

1− x0
)
ε

= 1− (1− x)ε = Fε(x).
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More interesting, the converse is also true. Any self-similar Lorenz curve F (x) which is differentiable and
has a continuous derivative at zero is of the form F (x) = 1− (1− x)F

′(0). This means that F (x) = Fε(x)
for equity parameter ε = F ′(0).

The claim can be verified as follows. First, an argument substitution leads to an equivalent functional
equation for self-similarity. The substitution is w = w(x) = x0 + x (1 − x0). The new argument ranges
between x0 and 1 for the original argument x ranging between zero and one. The original argument is
expressed by the new argument as x = w−x0

1−x0
. Thus, the self-similarity equation becomes

F (w)− F (x0)
1− F (x0)

= F (
w − x0

1− x0
).

This allows the subsequent transformation of the functional equation to a differential equation by formally
denoting the new argument w again by x.

F (x)− F (x0)
1− F (x0)

= F (
x− x0

1− x0
) =⇒ F (x)− F (x0)

x− x0
= (1− F (x0)) ·

F (x−x0
1−x0

)
x− x0

=⇒ F ′(x0) = lim
x→x0

F (x)− F (x0)
x− x0

= (1− F (x0)) · lim
x→x0

F (x−x0
1−x0

)
x− x0

0/0
= (1− F (x0)) · lim

x→x0

F ′(x−x0
1−x0

)
1

· (x− x0

1− x0
)′

= (1− F (x0)) · lim
x→x0

F ′(x−x0
1−x0

)
1

· 1
1− x0

=
1− F (x0)

1− x0
· F ′(0).

This is the linear inhomogenous differential equation from section 2 for ε = F ′(0) for which the solution
manifold was given by the Lorenz curves Fε(x).

Interestingly, the functional equation for self-similarity does not require the Lorenz curves to be of any
parametric type. But all solutions of the functional equation are parametric showing that the equity
parameter evolves from self-similarity.

3.2 Self-similarity by equality of Gini-indices

Pointwise equality of the original Lorenz curve with all truncations can be relaxed to equality of Gini-
indices. An income distribution is therefore understood to be self-similar if each truncation has the same
Gini-index as the original Lorenz curve which means that

2 ·
∫ 1

0

x− F x0(x)dx = 2 ·
∫ 1

0

x− F (x)dx

for all x0 ∈ (0, 1). The condition is sketched for only one truncation value in figure 2.

Each Lorenz curve which is self-simiar in this sense is of the Pareto type. The argument is as follows.
Abbreviating the Gini-index by

g = 2 ·
∫ 1

0

x− F (x)dx = 1− 2
∫ 1

0

F (x)dx,
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Figure 2: Truncation at x0 = 0.6. The Gini-index of the original curve, which equals the size of the two
shaded areas (left) must be equal to the size of the shaded area (right) which is derived from the small
shaded area (left) by the same zooming operation as in figure 1.

the stipulated equality of all Gini-indices results in the identity

∫ 1

0

F x0(x)dx =
∫ 1

0

F (x)dx =
1− g

2
.

Thus

∫ 1

0

F (x0 + x (1− x0))− F (x0)
1− F (x0)

dx =
1− g

2

=⇒
∫ 1

0

F (x0 + x (1− x0))dx =
1− g

2
(1− F (x0)) + F (x0)

=⇒
∫ 1

x0

F (w)
1− x0

dw = F (x0)(1− 1− g
2

) +
1− g

2

=⇒
∫ 1

x0

F (w)dw = F (x0)(1− x0)
1 + g

2
+

1− g
2

(1− x0)

=⇒ d

dx0

∫ 1

x0

F (w)dw =
d

dx0

[
F (x0)(1− x0)

1 + g

2
+

1− g
2

(1− x0)
]

=⇒ −F (x0) =
1 + g

2

[
F ′(x0)(1− x0)− F (x0)

]
− 1− g

2

=⇒ 0 =
1 + g

2
(1− x0)F ′(x0)− F (x0)(

1 + g

2
− 1)− 1− g

2

The second implication uses the same substitution w = w(x) = x0 + x(1 − x0) that was used for self-
similarity by pointwise equality. This substitution has the differentials dw/dx = 1−x0 or dx = dw/(1−x0).
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The fifth implication uses the fundamental theorem of calculus. All in all, the sequence of equations can
be continued as

F ′(x0) =
F (x0)( 1+g

2 − 1)
1+g
2 (1− x0)

+
1− g

2(1− x0) 1+g
2

=
1

1− x0

[1− g
1 + g

+ F (x0)
1 + g − 2

1 + g

]
=

1− g
1 + g

· 1− F (x0)
1− x0

.

Thus, each Lorenz curve which is self-similar in the sense of Gini-indices satisfies the differential equation
from section 2 with ε = 1−g

1+g and, thus, is of the type Fε(x).

4 Empirics

The Lorenz curves of type Fε can be fitted to empirical data from support sets in the usual sense of sum
of least squares. The set support set is denoted as {(xi, yi)| i = 1, . . . , n}. This amounts to a solution of
the regression problem

min
0<ε<1

n∑
i=1

(Fε(xi)− yi)2.

Thus regression problem is not known to be solvable in closed form so that approximations must be
resorted to. The fitting objective is not a convex function of the equity parameter but it is a quasiconvex
function. This still means that it has a unique local minimum which is global. The minimizer is denoted
as best fit equity parameter.

For approximation, parameter sweeping was applied here which means that the error function was evalu-
ated for a finite number of candidate parameters and the minimzer of these was selected as best fit equity
parameter.

Computations of regressions were performed on the so-called world development indicators of the World
Bank [Wo]. The support points for Lorenz curves of 30 nations as well as their best fit equity parameters
are given in the subsequent table.
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Nation x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 ε

Austria 0.1 0.044 0.2 0.104 0.4 0.252 0.6 0.437 0.8 0.666 0.9 0.807 0.6494
Brazil 0.1 0.009 0.2 0.025 0.4 0.08 0.6 0.18 0.8 0.363 0.9 0.524 0.2778

Canada 0.1 0.028 0.2 0.075 0.4 0.204 0.6 0.376 0.8 0.606 0.9 0.762 0.5525
China 0.1 0.022 0.2 0.055 0.4 0.153 0.6 0.302 0.8 0.525 0.9 0.691 0.4464

Czech Rep. 0.1 0.043 0.2 0.103 0.4 0.248 0.6 0.425 0.8 0.642 0.9 0.776 0.6173
Denmark 0.1 0.036 0.2 0.096 0.4 0.245 0.6 0.428 0.8 0.655 0.9 0.795 0.6289
Finland 0.1 0.042 0.2 0.1 0.4 0.242 0.6 0.418 0.8 0.641 0.9 0.784 0.6135
France 0.1 0.028 0.2 0.072 0.4 0.198 0.6 0.37 0.8 0.598 0.9 0.749 0.5376

Germany 0.1 0.037 0.2 0.09 0.4 0.225 0.6 0.4 0.8 0.629 0.9 0.774 0.5882
Gr. Britain 0.1 0.026 0.2 0.066 0.4 0.181 0.6 0.344 0.8 0.571 0.9 0.727 0.5025

Greece 0.1 0.03 0.2 0.075 0.4 0.199 0.6 0.368 0.8 0.596 0.9 0.747 0.5376
Hungary 0.1 0.039 0.2 0.088 0.4 0.213 0.6 0.379 0.8 0.602 0.9 0.752 0.5525

India 0.1 0.035 0.2 0.081 0.4 0.197 0.6 0.347 0.8 0.54 0.9 0.665 0.4673
Italy 0.1 0.035 0.2 0.087 0.4 0.227 0.6 0.408 0.8 0.637 0.9 0.782 0.5988

Japan 0.1 0.048 0.2 0.106 0.4 0.248 0.6 0.424 0.8 0.644 0.9 0.783 0.6211
Korean Rep. 0.1 0.029 0.2 0.075 0.4 0.204 0.6 0.378 0.8 0.607 0.9 0.757 0.5525

Mexico 0.1 0.014 0.2 0.036 0.4 0.108 0.6 0.226 0.8 0.418 0.9 0.572 0.3279
Netherlands 0.1 0.028 0.2 0.073 0.4 0.2 0.6 0.372 0.8 0.6 0.9 0.749 0.5405

Nigeria 0.1 0.016 0.2 0.044 0.4 0.126 0.6 0.251 0.8 0.444 0.9 0.592 0.3546
Norway 0.1 0.041 0.2 0.1 0.4 0.243 0.6 0.422 0.8 0.646 0.9 0.788 0.6211
Poland 0.1 0.03 0.2 0.077 0.4 0.203 0.6 0.37 0.8 0.591 0.9 0.737 0.5319

Portugal 0.1 0.031 0.2 0.073 0.4 0.189 0.6 0.348 0.8 0.566 0.9 0.716 0.5000
Russian Fed. 0.1 0.017 0.2 0.044 0.4 0.13 0.6 0.263 0.8 0.464 0.9 0.613 0.3731

S. Africa 0.1 0.011 0.2 0.029 0.4 0.084 0.6 0.176 0.8 0.353 0.9 0.541 0.2809
Slovakia 0.1 0.051 0.2 0.119 0.4 0.277 0.6 0.463 0.8 0.685 0.9 0.818 0.6806

Spain 0.1 0.028 0.2 0.075 0.4 0.201 0.6 0.371 0.8 0.598 0.9 0.748 0.5405
Sweden 0.1 0.037 0.2 0.096 0.4 0.241 0.6 0.422 0.8 0.654 0.9 0.799 0.6289

Switzerland 0.1 0.026 0.2 0.069 0.4 0.196 0.6 0.369 0.8 0.598 0.9 0.748 0.5376
USA 0.1 0.015 0.2 0.048 0.4 0.153 0.6 0.313 0.8 0.548 0.9 0.715 0.4673

Venezuela 0.1 0.013 0.2 0.037 0.4 0.121 0.6 0.257 0.8 0.469 0.9 0.63 0.3788

As a reminder for the interpretation of the equity parameter, a value of ε = 0.5376 (France) means that
each income approximately equals 53.76% of the average of all higher incomes. The interpretation is ever
more appropriate when the regression error becomes ever smaller. The largest regression error of the
previous best fits is attained by USA and the smallest best fit is attained by the Czech Republic as well
as by Slovakia. All best fit regression errors are listed in [KPR].

5 Relation to the Atkinson index

Out of the plethora of indices for income inequality, the Atkinson index [A] is one that not merely
aggregates an income distribution to a single number but which requires a so-called shape parameter.
The effect of this parameter is to make the measure more sensitive either to incomes that lie close to or
far from the average income. The Atkinson index is one of the ”newer” measures of income inequality
which actually is considered in official statistics, see for example [USCensus].

For a finite discrete distribution of absolute incomes w1, . . . , wn, the Atkinson index is defined as

Ae = 1−
[ 1
n

n∑
i=1

(
wi
w̄

)
1−e]1/(1−e)

.

All absolute incomes are transformed to relative incomes by normalizing with the average income w̄ =
1/n·

∑n
i=1 wi. The shape parameter e varies between 0 and 1. This parameter is arbitrarily and externally

set; in particular, it does not depend on empirical data. Increasing shape parameters lead to increasing
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values of the Atkinson index starting from zero since Ae = 0 for arbitrary distributions and for e = 0.
This is expressed as ”... the higher this parameter the more society is concerned about inequality” [Lit]
though this intuition is not easy to grasp. The Atkinson index itself has the same indication as the Gini
index. Large values denote large inequality and small values denote little inequality for any fixed positive
shape parameter.

It is proposed here to use equity parameters as shape parameters for the Atkinson index. Therefore, best
fit equity parameters are computed by regression as in section 4 and then inserted into the formula. This
allows to compare different income distributions by the Atkinson index with a certain range of shape
parameters. For illustration, two hypothetical distributions of six absolute incomes are considered.

wi 10 11 12 20 21 22
vi 10 11 12 30 31 32

Both distributions are quite even, since the largest income is only the 2.2 fold and – respectively – the
3.2 fold of the smallest income. For three arbitrarily chosen values of the shape parameter the values of
the Atkinson index are computed as follows.

e = 0.25 e = 0.50 e = 0.75
w 0.01285 0.02582 0.03881
v 0.02273 0.06091 0.09169

What is a reasonable value or interval of values for the shape parameter when comparing the two distribu-
tions? The best fit equity parameter for the two distributions is obtained from normalizing the cumulative
income to one. This results in the support points and the best fit equity parameter of the two Lorenz
curves as follows.

1/6 2/6 3/6 4/6 5/6 Best fit equity parameter
w 10/96 21/96 33/96 53/96 74/96 ε = 0.7095
v 10/126 21/126 33/126 63/126 94/126 ε = 0.6071

Computing the Atkinson index for the first, more even distribution with shape parameter e = 0.7095
and for the second, less even distribution with shape parameter e = 0.6071 leads to comparisons by the
subsequent range of values.

e = 0.6071 . . . e = 0.7095
w 0.03138 . . . 0.03671
v 0.07413 . . . 0.08673

The Atkinson indices are thus computed only for certain values above one half in this example. The
previously mentioned concern about inequality is supposed to be actually expressed in terms of equity
parameters. It is hence recommended to use the range of these parameters for the shape parameters.

6 Growth and equity revisited

The most promising potential to reduce inequality is assumed to originate from growth which is expressed
by the view that ”... economic growth is an indispensable requirement for poverty reduction” [UK]. Growth
itself is not formally modelled here in order to not become susceptible to disputes about growth theories
as such. The present view of growth is pragmatic and closer to exogenous than to endogenous concepts as
it calls for transfers without a formally rational decision like utility maximization or else by an economical
agent.

A quantitative relation between growth and inequality or between growth and another indicator has often
been searched for. A celebrated example of such a hypothetical relation is given by Kuznets’ inverse-U
shaped curves. This hypothesis states that the average income of a nation and, thus, growth as a function
of inequality is inverse-U shaped [GaKu]. Inverse-U shaped curves typically are parabolas with negative
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curvature parameter. However, various data analyses have shown that there is little if no correlation
between growth and other parameters when the search is carried out ”blindly” across nations. Some
studies including [Mi] indicate that the income distribution on a global scale is recently becoming more
uneven as growth is very different in different parts of the world.

Growth and inequality are considered as being determined by common factors rather than being inde-
pendent variables [LuSq], [PR]. Then, starting out from an unequal income distribution, growth and
inequality reduction may go hand in hand. An example is Singapur.

Historic data of Singapur’s economic development show quite a strong growth at an average annual rate of
about 4.5% after inflation over the years from 1980 to 1994. For the same period, the income distribution
becomes more even [SI]. The given data on deciles of absolute income levels transform to the subsequent
support points for Lorenz curves.

1980 1994
xi yi xi yi
0.1 0.007738 0.1 0.01696
0.2 0.03608 0.2 0.04694
0.3 0.07486 0.3 0.08739
0.4 0.12349 0.4 0.13914
0.5 0.18434 0.5 0.20295
0.6 0.26042 0.6 0.28239
0.7 0.35606 0.7 0.38134
0.8 0.47996 0.8 0.50660
0.9 0.65013 0.9 0.67372

The strong growth goes along with a development process that reduces inequality; low income groups
benefit more from the economic development than high income groups. This may be considered as so-called
capacity building. Ever larger population segments receive better education, better health care, better
opportunities to play an increasingly important role in the economy etc. The devlopment is reflected by
an increase in the best fit equity parameter from ε1980 = 0.3803 to ε1994 = 0.4206.

The foregoing example does not suggest or even imply that certain levels of the equity parameter lead to
substantial growth rates nor is the converse true. Rather, for certain regions, growth and inequality may
turn out to be endogenously related. This is a matter of the regime in control.

7 Towards optimal levels of inequality

The issue of an optimal or ideal level of inequality for income distributions has often been raised either
in relation to growth, see above, or in relation to welfare. For the latter see for example [Gr], [Ko]. The
intention here is to elaborate on the welfare aspect from a middle class perspective.

In accordance with the underlying notion of poverty which relates the lowest income to the average of
all incomes, middle class incomes are also defined in terms of the average of all incomes. This can be
achieved by expressing middle class incomes by multiples of the lowest theoretical income ε; the average
of all incomes is again normalized to unity. Middle class incomes are understood as intervals [βε, αε] for
multiples α > β > 1.

Since the middle class can be considered as the work horse of a prosperous society, its cumulative income
should be maximized among varying equity parameters. Formally, this amounts to the solution of the
following maximization problem.

max
0<ε<1

Fε(xαε)− Fε(xβε),

where the arguments of the Lorenz curve are the unique points given by the respective density equations
fε(xαε) = αε and fε(xβε) = βε. These density equations can be solved explicitly by xαε = 1− exp( lnα

ε−1 )
with the same formula for β. A critical point analysis then shows that the maximizer for the middle class
can be computed in closed form as

ε =
ln lnα

ln β

ln lnα
ln β + ln α

β

.
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Sample values of formally optimal equity parameters are as follows.

Middle class income boundaries Optimal equity parameter Middle class range Middle class size
for optimal equity parameter

β α ε [xβε, xαε] xαε − xβε
2 5 0.4790 [0.7356, 0.9544] 0.2188

1.5 5 0.5338 [0.5809, 0.9683] 0.3874
2 10 0.4272 [0.7018, 0.9820] 0.2802

1.1 10 0.5906 [0.2077, 0.9964] 0.7887
1.01 100 0.5718 [0.0230, 0.9999] 0.9769

Optimal distributional inequality is at equity parameter levels slightly above one half in many situations
including the extreme case that is specified in the last line of the foregoing table. That situation assigns
almost 98% of the whole population to the middle class. Defining the middle class to have at least the
double of the theoretically lowest income appears to leave out segments that intuitively belong to the
middle class. Thus, the lower boundary should be less than two. Then, the best fit equity parameters of
many European and some Asian nations as computed in section 4 are close to the optimal values.

8 Comparing absolute income levels

A developed nation typically does not only have a higher per capita income than an undeveloped na-
tion but, also, has a more even income distribution. Often, the spread between the absolute income
distributions is so large, that most absolute incomes in the undeveloped nation are smaller than in the
developed nation. But there need not be dominance meaning that this relation need not hold for all
incomes. Exceptions and even a reversal may apply to very high incomes.

Since empirical data on very high incomes are difficult to obtain for one nation [Pa] and even more so
for a comparison between nations, we attain a purely formal point of view. The Pareto Lorenz curves are
assumed to denote exactly the income distributions at the heavy tail. Then it turns out that there is a
critical muiltiple of the per capita income of the developed nation so that the population fraction with
at least this absolute income is larger in the undeveloped nation than in the developed nation.

Formally, let α(n, ε, ε′) be the critical multiple as a function of the equity parameter ε of the developed
nation, the equity parameter ε′ of the undeveloped nation and the multiple n of the per capita income of
the developed nation vs. the undeveloped nation. The critical level can be computed in closed form by

α(n, ε, ε′) = ε · (n ε

ε′
)

1−ε
ε−ε′

.

Sample values of the critical multiple are given in the following table for a per capita ratio of n = 5.

ε′ undeveloped nation ε developed nation
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 20 mio 3921.4 160.00 27.951 9.1169 4.1413 2.2952 1.4484
0.2 - 400452 400.00 33.663 9.0000 3.8987 2.1715 1.4041
0.3 - - 35117 100.23 12.927 4.4189 2.2546 1.4134
0.4 - - - 4768.4 33.750 6.1250 2.5298 1.4604
0.5 - - - - 777.60 12.964 3.2000 1.5588
0.6 - - - - - 138.95 5.3333 1.7617
0.7 - - - - - - 26.122 2.2819
0.8 - - - - - - - 5.0625

minimum value 1.737 mio 3347.9 159.99 27.144 8.6024 3.8774 2.1715 1.4028
ε′0 0.0501 0.0751 0.1001 0.1252 0.1502 0.1753 0.2003 0.2253

The entries of the diagonal section of this table are read as follows. When comparing a developed nation
with ε = 0.6 and an undeveloped nation with ε′ = 0.3 whose ratio of per capita incomes is n = 5, then
the population segment in the undeveloped nation having an absolute income of at least the 12.927-fold
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of the per capita income of the developed nation is larger than in the developed nation. In this sense
there are more high incomes in undeveloped nations than in developed nations.

The entries from the diagonal section of the foregoing table are not monotone when considered columnwise.
The minimum equity parameter for the undeveloped nation is columnwise denoted by ε′0. Formally, this
is the minimizer of the critical income levels so that ε′0 = argmin0<ε′<εα(n, ε, ε′). This minimizer does
not admit a closed form solution but must be approximated numerically. The corresponding critical value
is specified as ”minimum value” in the second last row of the table. This is the least unfavourable critical
value for an undeveloped nation in comparison to a fixed equity parameter of the developed nation and
a fixed ratio of per capita incomes between the two nations.

9 Inspection of homogeneity by merger analysis

Whenever two distinct societies are known by their characteristics which here are populations (size), per
capita incomes and Lorenz curves, they can be merged to form one society with joint Lorenz curve. The
merger may be real as for nations forming a union or it may be conceptual. The intricate computation
of the common Lorenz curve is derived below.

The inverse merger problem can be stated for a single society. The society is assumed to be split into two
subsocieties as in an Apartheid situation. However, low and high incomes may be present in both subsoci-
eties. This makes the subsequent decomposition of a society distinct from decompositions by thresholding
such as into rich and poor. The issue at hand is to identify both subsocieties only from empirical data.
This will be facilitated by a multivariate regression. The characteristics of the two subsocieties form the
variables of the regression.

Whenever the equity parameters and the per capita incomes of the two subsocieties are close, the whole
society is understood to be homogenous. Whenever the equity parameters or the per capita incomes are
far, the whole society is understood to be inhomogenous. The assignment of an individual to either of
the subsocieties is impossible since the approach is based on holistic data.

The empirical results of the merger analysis (section 9.2) can be followed without going through the
intricate derivation (subsections 9.1.1 and 9.1.2).

9.1 Merger

It can be expected for the joint Lorenz curve that it bears more inequality than any of the individual
Lorenz curves. The reason is that individual populations may have similar income distributions on clearly
distinct absolute levels. Merging the populations may then cause more unevenness; equivalently, the inter-
inequality dominates the intra-inequality. This means that the equity parameter of the joint Lorenz curve
or a parametric approximation therof, need not lie between the equity parameters of the individual Lorenz
curves. But when income levels are close, the equity parameter of the joint Lorenz curve may actually lie
between the individual equity parameters as in the case of India, see below.

The formal situation is described as follows.

Characteristics Subsociety 1 Subsociety 2
Equity parameter ε1 ε2

Lorenz curve Fε1(x) = 1− (1− x)ε1 Fε2(x) = 1− (1− x)ε2
Density fε1(x) = ε1 (1− x)ε1−1 fε2(x) = ε2 (1− x)ε2−1

Population m 1−m
cumulative income b 1− b

The difficulty of computing the joint Lorenz curve is that the subsocieties mix at different rates when
arranged according to increasing absolute income. An additional difficulty stems from the different cases
that determine the merger and the non-merger sectors of the joint Lorenz curve. The two sectors are
illustrated in figure 3. In the lower sector, the poorest of one population exclusively make up the poorest
of the merged population. Then proper merging occurs. Since the densities in figure 3 indicate absolute
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b
m ε1 b

m fε1(x)

1−b
1−m ε2

1−b
1−m fε2(x)

xl · 1
m

Figure 3: Two densities of per capita income which are given as products of the average incomes with
the derivatives of Lorenz curves. The merger of the two subsocieties begins when income values attain
common values. The domain of these income levels is referred to as merger area.

incomes, the integrals below the curves add up to b/m and 1− b/(1−m) respectively rather than unity.
Both densities are unbounded. As a consequence, the merger area reaches right to the upper interval
boundary; there is no high income sector which is made up of one population only.

9.1.1 Merger formulas

The joint Lorenz curve depends on the four parameters ε1, ε2,m, b. All these range between zero and one.
The joint Lorenz curve is given as a mixture of the individual Lorenz curves

Fε1,ε2,m,b(x) = b Fε1(x1
1
m

) + (1− b)Fε2(x2
1

1−m
),

for those arguments x that have a deconvolution x = x1 + x2 or, equivalently, x2 = x − x1 which is
understood to be the unique solution x1 of the deconvolution equation

b

m
fε1(x1

1
m

) =
1− b
1−m

fε2((x− x1)
1

1−m
).

The solution lies in the open interval (max{0, x−1 +m},min{x,m}). This interval can be used as search
region for any numerical procedure that actually computes the deconvolution. The deconvolution cannot
be computed in closed form except for trivial parameter constellations.

For arguments that do not have a deconvolution, the joint Lorenz curve is given by

Fε1,ε2,m,b(x) =
{

(1− b)Fε2( 1
1−m x) if (1− b)/(1−m) · ε2 ≤ b/m · ε1

b Fε1( 1
m x) if (1− b)/(1−m) · ε2 > b/m · ε1

for 0 ≤ x ≤ xl. The value xl is the lower bound of the merger area. This value is specified for the joint
Lorenz curve so that it receives a normalizing factor when visualized in terms of the individual income
distributions as in figure 3. The lower bound of the merger area lies between zero and one and it is given
as the unique solution of the equations{

(1− b)/(1−m) · fε2( 1
1−m x) = b/m · ε1 for (1− b)/(1−m) · ε2 ≤ b/m · ε1

b/m · fε1( 1
m x) = (1− b)/(1−m) · ε2 for (1− b)/(1−m) · ε2 > b/m · ε1.
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The lower bound of the merger area can be computed in closed form. For the two foregoing cases specified
in the foregoing order the values are

xl =

 (1−m) ·
(

1− exp( ln b−ln(1−b)+ln(1−m)−lnm+ln ε1−ln ε2
ε2−1 )

)
m ·

(
1− exp( ln(1−b)−ln b+lnm−ln(1−m)+ln ε2−ln ε1

ε1−1 )
)
.

The merger area (xl, 1] is exactly that range of population quantiles x that have a deconvolution.

9.1.2 Derivation

For the sake of the derivation of the joint Lorenz curve, let the subsocieties consist of Mi individuals with
cumulative income Bi, i = 1, 2. The income at rank x is then typically formed by i0 individuals from the
first and j0 individuals from the second subsociety so that

x ≈ i0 + j0
M1 +M2

=
i0

M1 +M2︸ ︷︷ ︸
=x1

+
j0

M1 +M2︸ ︷︷ ︸
=x2

.

Both individual incomes at rank x are equal up to discretization error and both individuals are at different
ranks within their subsocieties which requires rescaling of the argument. This is formally expressed as

B1

M1
fε1(

i0
M1

) ≈ B2

M2
fε2(

j0
M2

).

This obviously results in

B1

M1
fε1(

i0
M1 +M2

M1 +M2

M1
) ≈ B2

M2
fε2(

j0
M1 +M2

M1 +M2

M2
).

Ignoring the discretization error results in the equation

B1

M1
fε1(x1

M1 +M2

M1
) =

B2

M2
fε2(x2

M1 +M2

M2
).

Inserting the original parameters B1 = b,M1 = m,B2 = 1− b,M2 = 1−m results in the deconvolution
equation

b

m
fε1(x1

1
m

) =
1− b
1−m

fε2(x2
1

1−m
).

All in all, the income at rank x of the joint distribution equals

B1

M1
fε1(0) +

B1

M1
fε1(

1
M1

) + . . .+
B1

M1
fε1(

i0 − 1
M1

)

+
B2

M2
fε2(0) +

B2

M2
fε2(

1
M2

) + . . .+
B2

M2
fε2(

j0 − 1
M2

)

=
i0∑
i=1

1
M1

B1fε1(
i− 1
M1

) +
j0∑
j=1

1
M2

B2fε2(
j − 1
M2

)

≈
∫ i0

M1

0

B1fε1(u)du+
∫ j0

M2

0

B2fε2(u)du

=
∫ i0

M1+M2

M1+M2
M1

0

B1fε1(u)du+
∫ j0

M1+M2

M1+M2
M2

0

B2fε2(u)du

≈ B1Fε1(x1
M1 +M2

M1
) +B2Fε2(x2

M1 +M2

M2
).
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The sums are Riemann sums of the given integrals and thus provide approximations. Normalizing from
absolute to relative per capita income requires to divide by the total income B1 +B2 = 1. This leads to
the Lorenz curve

Fε1,ε2,m,b(x) = b Fε1(x1
1
m

) + (1− b)Fε2(x2
1

1−m
),

for any quantile x that is uniquely decomposable into x = x1 + x2 with solution x1 of the deconvolution
equation. The formula for the Lorenz curve on the lower sector, where no deconvolution exists, is derived
similarly.

9.2 Regression

The joint Lorenz curves can be fitted to empirical data from support sets {(xi, yi)| i = 1, . . . , n} in the
same way as the individual Lorenz curves, see section 4. This amounts to a solution of the regression
problem

min
0≤ε1,ε2,m,b≤1

n∑
i=1

(Fε1,ε2,m,b(xi)− yi)2.

This regression problem is multivariate with four regression parameters: the equity parameters of the two
subsocieties ε1, ε2 and the relative size m and the relative income share b of one subsociety. The relative
size and the relative income share of the other subsociety are then simply computed as 1−m and 1− b.
The multivariate regression can approximately be solved by enumeration at fixed step sizes of the four
independent variables. Enumeration at adaptive step sizes and even gradient procedures are alternative
methods. The computations of the joint Lorenz curves can be performed in closed form with one exception.
The deconvolution over the merger area (see above) is obtained by numerical enumeration. Thus, the whole
regression consists of nested numerical procedures which pile up to a surprisingly high computational load.

9.2.1 Nations

The support data of nations for the regression are again the world development indicators that were used
for the one-parametric regression in section 4. The regression results are stated in the following table1.
The poorer subsociety is listed first for all nations which means that the average incomes in the poorer
subsociety, in the overall society and in the richer subsociety are arranged as b

m < 1 < 1−b
1−m .

1The computations for this table and for the world income (see below) were done in MATLAB by Markus Stark.
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Nation ε1 b m b/m ε2 1− b 1−m (1− b)/(1−m) ε
Austria 0.92 0.16 0.30 0.53 0.72 0.84 0.70 1.20 0.6494
Brazil 0.52 0.16 0.56 0.29 0.38 0.84 0.44 1.81 0.2778

Canada 0.78 0.12 0.30 0.40 0.64 0.88 0.70 1.26 0.5535
China 0.48 0.36 0.60 0.60 0.60 0.64 0.40 1.60 0.4464

Czech Rep. 0.64 0.28 0.40 0.70 0.68 0.72 0.60 1.20 0.6173
Denmark 0.86 0.14 0.28 0.50 0.70 0.86 0.72 1.19 0.6289
Finland 0.76 0.18 0.32 0.56 0.68 0.82 0.68 1.21 0.6135
France 0.74 0.12 0.30 0.40 0.62 0.88 0.70 1.26 0.5376

Germany 0.86 0.14 0.30 0.47 0.66 0.86 0.70 1.23 0.5882
Gr. Britain 0.88 0.10 0.30 0.33 0.58 0.90 0.70 1.29 0.5025

Greece 0.86 0.14 0.34 0.41 0.62 0.86 0.66 1.30 0.5376
Hungary 0.58 0.48 0.64 0.75 0.70 0.52 0.36 1.44 0.5525

India 0.38 0.52 0.56 0.93 0.62 0.48 0.44 1.09 0.4673
Italy 0.82 0.14 0.30 0.47 0.68 0.86 0.70 1.23 0.5988

Japan 0.82 0.20 0.34 0.59 0.68 0.80 0.66 1.21 0.6211
Korean Rep. 0.72 0.14 0.32 0.44 0.64 0.86 0.68 1.26 0.5525

Mexico 0.40 0.28 0.58 0.48 0.42 0.72 0.42 1.71 0.3279
Netherlands 0.78 0.12 0.30 0.40 0.62 0.88 0.70 1.26 0.5405

Nigeria 0.78 0.08 0.32 0.25 0.40 0.92 0.68 1.35 0.3546
Norway 0.92 0.14 0.28 0.50 0.68 0.86 0.72 1.19 0.6211
Poland 0.78 0.14 0.32 0.44 0.60 0.86 0.68 1.26 0.5319

Portugal 0.84 0.14 0.34 0.41 0.56 0.86 0.66 1.30 0.5000
Russ. Fed. 0.62 0.12 0.38 0.32 0.44 0.88 0.62 1.42 0.3731
S. Africa 0.22 0.66 0.82 0.80 0.94 0.34 0.18 1.89 0.2809
Slovakia 0.84 0.22 0.34 0.65 0.76 0.78 0.66 1.18 0.6806

Spain 0.72 0.14 0.32 0.44 0.62 0.86 0.68 1.26 0.5405
Sweden 0.82 0.18 0.34 0.53 0.72 0.82 0.66 1.24 0.6289

Switzerland 0.68 0.16 0.36 0.44 0.64 0.84 0.64 1.31 0.5376
USA 0.64 0.10 0.34 0.29 0.58 0.90 0.66 1.36 0.4673

Venezuela 0.80 0.06 0.32 0.19 0.46 0.94 0.68 1.38 0.3788

The table is best read starting with the data for South Africa. The size data of the subsocieties roughly
match the nation’s former Apartheid situation; the richer subsociety consists of about 18% of the popu-
lation and the poorer of about 82%. Remarkably, this result follows from only one Lorenz curve, namely
that of the whole nation.

Assuming a bipartition for each other nation leads to subsocieties that are more balanced in size though
the income inequality may even be larger as in the comparison of Brazil with South Africa. An explanation
is that the income ranks between the very top and the very bottom in all other nations are more densly
occupied than in South Africa – irrespective of the degree of inequality.

It is no surprise that the overall equity parameter lies below the equity parameters of each of the two
subsocieties in almost all cases. The only exceptions are India and South Africa. The reason for the
more frequent case is that the difference between the average income levels creates extra inter-inequality
in addition to the intra-inequality within each subsociety, see above. But for South Africa the equity
parameters are very far apart and for India the two subsocieties have very similar income levels (0.93 and
1.09) so that inter-inequality is almost negligible. Another observation about India’s subsocieties is that
they differ clearly from the US subsocieties though both nations have equal equity parameters.

In all nations except Brazil, China, Hungary, India, Mexico and South Africa the richer subsociety is larger
than the poorer subsociety. Brazil and India have equally sized subsocieties with Mexico’s subsocieties
being very similar-sized to these.

With the exceptions of China and the Czech Republic the larger of the two subsocieties has the smaller
of the two equity parameters. One reason for the more frequent situation of the larger subsociety having
the smaller equity parameter is that, all other things being equal, the larger subsociety tends to have a
larger income variation as the smaller subsociety.
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9.2.2 World

The world as a whole can be analyzed in the same way as individual nations. The support data for the
Lorenz curve of the World-income were computed in a ”one man one income” mode. This means that
income distributions were weighted by population size of each nation under consideration. Worldbank
data from more than 150 nations were aggregated and some data gaps had to be filled-in.

The resulting income distribution is more uneven than that of any single nation. The world equity
parameter equals 0.12 [StK]. The quantile data are as follows.

”Nation” x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6

World 0.1 0.0028 0.2 0.009 0.4 0.023 0.6 0.0501 0.8 0.1261 0.9 0.3133

The four-parameter regression results in the subsequent subsociety data.

”Nation” ε1 b m b/m ε2 1− b 1−m (1− b)/(1−m) ε
World 0.06 0.64 0.82 0.78 0.90 0.36 0.18 2.00 0.12

According to this computation, the world population can be assumed to consist of two subsocieties which
have the same proportions as those of South Africa. But the world’s spread in terms of equity parameters
and average incomes is even more polarized.
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[KPR] Kämpke, T., Pestel, R., Radermacher, F.J., ”A computational concept for normative equality”,
European Journal of Law and Economics 15, 2003, p. 129-163.

[Ko] Koch, J.V. (ed.), ”The distribution of household incomes in Hampton Roads”, report, Old Do-
minion University, 2003; www.odu.edu/bpa/forecasting/index.shtml.

[LADW] Li, L., Alderson, D., Doyle, J.C., Willinger, W., ”Towards a theory of scale-free
graphs: definition, properties, and implications”, Internet Mathematics 2, 2005, p. 431-523,
www.internetmathematics.org.

[Lit] Litchfield, J.A., ”Inequality: methods and tools”, Discussion paper, Worldbank, Washington, 1999.

[LuSq] Lundberg, M., Squire, L., ”The simultaneous evolution of growth and inequality”, The Economic
Journal 113, 2003, p. 326-344.

[Mi] Milanovic, B., ”True world income distribution, 1988 and 1993: first calculation based on household
surveys alone”, The Economic Journal 112, 2002, p. 51-92.

[NiSo] Nirei, M., Souma, W., ”Income distribution and stochastic multiplicative process with reset
events”, in: The Complex Dynamics of Economic Interaction, Springer, New York, 2003.

[Pa] Parenti, M., ”The super rich are out of sight”, Political Archive, internet presentation, 2000;
www.michaelparenti.org/Superrich.html.

[PR] Pestel, R., Radermacher, F.J., ”Equity, wealth and growth”, Manuscript to the EU Project
TERRA 2000, FAW, Ulm, 2003.

[Ra] Rasche, R.H., Gaffney, J., Koo, A.Y.C., Obst, N., ”Functional forms for estimating the Lorenz
curve”, Econometrica 48, 1980, p. 1061-1062.

[RySl] Ryu, H.K., Slotje, D.J., ”Parametric approximations of the Lorenz curve”, in [Sil], p 291-312.

[Sil] Silber, J. (ed.), ”Handbook of income inequality measurement”, Kluwer, Boston, 1999.

[SI] Singapur, ”Income growth and distribution”, report, Dept. of Statistics, Singapur, 1995; www.
singstat.gov.sg/papers/op/op-s3.pdf.
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