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Abstract

We compile classical relations between the Lorenz order and majorization for finite discrete dis-
tributions and between the Lorenz order and the convex order for all other distributions. Simple
transfers of the Pigou-Dalton type are extended as far as possible including approximations of con-
tinuous distributions.
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1 Introduction

Out of the wide body of literature on partial order relations over Lorenz curves only those are treated here
which are close to redistribution of income, wealth and possibly other goods which come in non-negative
magnitudes. We follow the classical extension of majorization for vectors to the convex stochastic order for
distributions. Thus, eventually, the Atkinson theorem will be extended to other than finite distributions;
the Lorenz order will be seen to be equivalent to the convex or concave stochastic order for all distributions
with identical, finite means.

When confusions with real numbers are avoided, vectors will be denoted by x, y etc. and they are under-
stood as column vectors. Matrices are denoted by A,B etc. and with transposes of vectors and matrices
are denoted by xT , AT etc.

2 Partial orders for Lorenz curves

The pivotal order for Lorenz curves is that for Lorenz curves without intersection point.

Definition 1 Random variable X with Lorenz curves LX is defined to be smaller in the Lorenz order
than random variable Y with Lorenz curve LY if and only if LX(u) ≥ LY (u) for all u ∈ [0, 1]. Notation
X ≤L Y .

The idea of the Lorenz order is unevenness since the one of two Lorenz curves, if any, which is consistently
closer to the diagonal (representing the egalitarian distribution) is the smaller. Obviously, two Lorenz
curves may be incomparable in the Lorenz order and, even worse, distributions need not have Lorenz
curves. The Lorenz order is identical to the stochastic order for Lorenz curves considered as distribution
functions over the unit interval.

The Lorenz order may refer to Lorenz curves directly which means no explicit reference is made to random
variables or distributions. Two Lorenz curves are ordered as L1 ≤L L2 if and only if L1(u) ≥ L2(u) for
all u ∈ [0, 1]. L1 ≤L L2 implies the same order for the Gini indices G1 ≤ G2. The Gini index of a Lorenz

curve equals twice the area between the Lorenz curve and the diagonal G = 2 ·
∫ 1

0
u− L(u) du.

When L1 ≤L L2 and when the Gini indices of the two Lorenz curves are identical, then L1(u) = L2(u)
for all u ∈ [0, 1]. This follows from the continuity of Lorenz curves or by applying a general result for
distribution functions [MS, theorem 1.2.9, p. 5] to the special case of Lorenz curves.
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Lorenz curve that violate the Lorenz order may have an arbitrarily large number of intersection points.
This can be seen from the following construction. Consider an auxiliary polygon with k ≥ 4 nodes which
itself is a Lorenz curve. The slopes of any two linear segments are taken to be different. Then one Lorenz
curve is constructed from joining the by straight lines the first and third node, the third and fifth node
etc. and the other Lorenz curve is constructed from straight line segments from second to fourth node,
from fourth to sixth node etc. At the boundaries, direct neighboring nodes instead of second-neighbor
nodes may have to be connected, comp. figure 1. The resulting two Lorenz curves have k− 3 intersection
points. The same result can be obtained from a strictly convex Lorenz curve serving as auxiliary function.
All nodes are then drawn from this curve.
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Figure 1: Two piecewise linear Lorenz curves with k = 6 polygonal nodes and three intersection points.

2.1 Lorenz order and majorization

A concept for unevenness of vectors from an n-dimensional Euclidean space is majorization. Any vector
from IRn, n ≥ 2, can be considered as a finite income sample with all equal probabilities 1/n. These
probabilities are ignored. When the sum over all incomes of two vectors is identical, unevenness can be
formulated coordinate-wise beginning with the largest entries.

Definition 2 Vector y majorizes vector x when they have the same number of coordinates and when the
decreasingly sorted coordinates x[1] ≥ . . . ≥ x[n] and y[1] ≥ . . . ≥ y[n] satisfy the partial sum conditions

y[1] ≥ x[1]
y[1] + y[2] ≥ x[1] + x[2]
...
y[1] + . . .+ y[n−1] ≥ x[1] + . . .+ x[n−1]
y[1] + . . .+ y[n] = x[1] + . . .+ x[n].

Notation x ≤m y.

An example is x = (3, 3.5, 2.5)T ≤m (2, 3, 4)T = y. Majorization is verified by 4 ≥ 3.5, 4 + 3 ≥ 3.5 + 3 and
4 + 3 + 2 = 3.5 + 3 + 2.5. The vector of all equal entries (c, c, . . . , c) is majorized by every other vector
whose coordinates sum to n · c.

2



A relaxed notion is weak majorization which amounts to only requiring in the last partial sum condition
that y[1] + . . . + y[n] ≥ x[1] + . . . + x[n]. In addition, the concept of majorization applies to vectors with
some or all coordinates being negative. None of these variations is opted for. The reason for the latter is
that incomes are assumed to be non-negative.

Though majorization is reflexive (x ≤m x for all x) and transitive (x ≤m y and y ≤m z implies x ≤m z),
it is not a partial order since it is not antisymmetric; it is possible that x ≤m y and y ≤m x but still
x 6= y. Thus, majorization is not a partial order but a pre-(partial) oder. Vectors that majorize each other
are related to permutations.

More precisely, all vectors that are majorized by a particular vector form a convex set. This set is the
convex hull spanned by the vectors that result from all coordinate permutations of the given vector. The
geometry of majorization is quite simple in two dimensions as sketched in figure 2 and slightly more
complex in three dimensions as sketched in figure 3.

-
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Figure 2: The points which have non-negative coordinates and which majorize x = (4, 3)T lie on the
two line segments having slope -1 with xref = (3, 4)T . Majorization is thus seen to pull away from the
diagonal.

Figure 3: The vector x = (4, 1, 0.5)T leads to six vectors that lie in the plane H = {(x1, x2, x3)T |x1 +
x2 + x3 = 5.5} when its coordinates are permuted in all possible ways (dark dots). The set majorized by
x is the convex hull spanned by the six vectors (shaded area) and the set of vectors that majorize x is the
complement within the plane (white). All vectors outside the plane and incomparable to x with respect
to majorization.
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Majorization can be obtained from redistribution. A given vector x with decreasingly sorted coordinates
is compared to a vector x′ that differs only in two coordinates: x′i = xi−ε and x′j = xj +ε with i < j and
ε > 0. The given vector majorizes the new vector, which means x′ ≤m x, if the redistribution amount ε
is small enough to preserve sorting. Vector x′ is said to be obtained by a simple redistribution step or a
Pigou-Dalton transfer from x. Since the decreased coordinate is larger than the increased (xi > xj), this
transfer step can be considered as a redistribution ”from rich to poor”.

Lemma 1 (”Equivalence of majorization and successive Pigou-Daltor transfers”)
For x ≤m y there is a finite sequence x = xn ≤m . . . ≤m x2 ≤m x1 = y such that xk+1 results from a
Pigou-Dalton transfer from xk + 1, k = n− 1, . . . , 1.

Proof. Let both vectors have decreasingly sorted coordinates. The interim sequence is then constructed
by successive Pigou-Dalton transfers of adjacent coordinates beginning with the first transfer amount
ε = y1 − x1 as indicated

x2 =


x21
x22
x23
...
x2n

 =


y1 − ε
y2 + ε
y3
...
yn

 ≤m


y1
y2
y3
...
yn

 = y.

The next transfer is from the second to the third coordinate so that the new second coordinate equals
x2. These steps are continued until the new vector equals x. �

Majorization enables a certain kind of function monotonicity. A real–valued function F defined on vectors
is understood to be Schur-convex if x ≤m y implies F (x) ≤ F (y) and it is Schur-concave if x ≤m y implies
F (x) ≥ F (y). A special case of Schur-convexity is obtained from ordinary convexity by the next result.

Theorem 1 x ≤m y if and only if x1+. . .+xn = y1+. . .+yn and f(x1)+. . .+f(xn) ≤ f(y1)+. . .+f(yn)
for any real-valued function f which is convex and contnuous.

Proof. See [MS, corollary 1.5.7, p. 34]. �

When the function f is concave, the theorem implies that x ≤m y entails f(x1) + . . .+ f(xn) ≥ f(y1) +
. . .+f(yn). A characterization of majorization by multiplication with a doubly stochastic matrix is given,
for example, in [BB, p. 30]. A square matrix is doubly stochastic if all its entries are non-negative and all
row sums as well as all column sums are equal to one.

Theorem 2 x ≤m y is equivalent to the existence of a doubly stochastic matrix A with x = Ay.

The sample vectors x = (3, 3.5, 2.5)T ≤m (2, 3, 4)T = y allow the mapping of the larger vector to the
smaller vector as  3

3.5
2.5

 =

 1/3 1/3 1/3
0 1/2 1/2

2/3 1/6 1/6

 2
3
4

 .

The doubly stochastic matrix which maps the larger vector to the smaller need not be unique. In the
foregoing case, even a symmetric doubly stochastic matrix applies 3

3.5
2.5

 =

 1/2 0 1/2
0 1/2 1/2

1/2 1/2 0

 2
3
4

 .
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A symmetric matrix between majorized vectors may be difficult to obtain and it is a non-trivial issue
to decide if this is possible. Transitivity of majorization does not help for the symmetry issue though
transitivity can be expressed by x = Ay and y = Bz for doubly stochastic matrices A,B implying
x = ABz. Note that the product of two doubly stochastic matrices is again doubly stochastic. But
symmetry is not guaranteed since the product of two symmetric matrices, even if doubly stochastic, need
not be symmetric. An example of two symmetric, doubly stochastic matrices with asymmetric product is 1/2 1/2 0

1/2 1/2 0
0 0 1

 ·
 1/2 0 1/2

0 1 0
1/2 0 1/2

 =

 ∗ 1/2 ∗
1/4 ∗ ∗
∗ ∗ ∗

 .

A straightforward consequence from the definition of majorization is that it entails the Lorenz order.
The Lorenz order therefore refers to finite distributions which attain the values x1, . . . , xn and y1, . . . , yn,
respectively. All probabilities are equal so that P (X = xi) = P (Y = yi) = 1/n for all i when all
events are pairwise different. When multiple events xi are equal, probabilities add up according to event
multiplicity. The same applies to multiple events yi being equal. These distributions associated with
vectors will henceforth be denoted as natural distributions.

Lemma 2 x ≤m y if and only if X ≤L Y .

Proof. ”=⇒”. Let the coordinates of x and y be sorted decreasingly. Then x ≤m y implies

xn ≥ yn

xn + xn−1 ≥ yn + yn−1

xn + . . .+ x2 ≥ yn + . . .+ y2.

This can be seen from xn + . . . + xn−k = x1 + . . . + xn − (x1 + . . . + xn−k−1) ≥ y1 + . . . + yn − (y1 +
. . .+ yn−k−1) = yn + . . .+ yn−k for all k = 0, . . . , n− 2. The generalized inverses of the two distribution
functions are

F−1X (u) =


xn, if 0 ≤ u ≤ 1/n
xn−1, if 1/n < u ≤ 2/n
...

...
x1, if (n− 1)/n < u ≤ 1.

and F−1Y (u) =


yn, if 0 ≤ u ≤ 1/n
yn−1, if 1/n < u ≤ 2/n
...

...
y1, if (n− 1)/n < u ≤ 1.

Thus, the generalized inverses have identical jump points 0, 1
n ,

2
n , . . . , 1. There, the Lorenz curve of x has

the values 0, xn

x1+...+xn
, xn+xn−1

x1+...+xn
, . . . , 1 and the Lorenz curve of y has the values 0, yn

y1+...+yn
, yn+yn−1

y1+...+yn
, . . . , 1.

This means that the intended inequality is valid at all jump points of the generalized inverses: LX( k
n ) ≥

LY ( k
n ) for k = 0, . . . , n. Since both Lorenz curves are linear between the jump points, the desired in-

equality LX(u) ≥ LY (u) follows for all u ∈ [0, 1].

’⇐=”. The foregoing steps are reversible. �

Next, majorization will be extended from vectors to distributions. The idea of Schur-convexity is used to
yield order relations that are defined by integrals over certain classes of functions.

5



2.2 Lorenz order and integral orders

When a vector x is majorized by a vector y and when a function f is convex then the inequality from
theorem 1 can be written as 1

n f(x1) + . . . + 1
n f(xn) ≤ 1

n f(y1) + . . . + 1
n f(yn). Using the probabilistic

interpretation of vectors from the end of section 2.1 allows to rewrite the inequality in the more abstract
form Ef(X) ≤ Ef(Y ). This inequality can be valid for general probability distributions.

Definition 3 Random variable X is defined to be convex (stochastically) smaller than random variable
Y if and only if Ef(X) ≤ Ef(Y ) for all convex and continuous functions f . Notation X ≤cx Y .

The integration functions f are neither required to be increasing nor decreasing and the requirement of
being continuous only matters for points that do not lie in the domain interior of an integration function.
The reason is that every convex function is continuous in its interior. A concave (stochastic) order ≤cv

which were defined in the same way as the convex order except that integration functions were required
to be concave would essentially result in the same relation. Only an order reversal must be accepted:

X ≤cx Y ⇐⇒ Ef(X) ≤ Ef(Y )⇐⇒ E − f(X) ≥ E − f(Y )⇐⇒ Y ≤cv X.

The equivalences are true for all convex functions f and for all concave functions −f ; every concave
function g can be written as g = −f with convex function f . Thus X ≤cx implies EX = EY . More
specialized order relations result from increasing integration functions. Since replacing a function f by
−f will alter the monotonicity direction, the following order relations are not reversals of each other.

Definition 4 Random variable X is defined to be

1. increasingly convex (stochastically) smaller than random variable Y if and only if Ef(X) ≤ Ef(Y )
for all increasing, convex and continuous functions f . Notation X ≤icx Y .

2. increasingly concave (stochastically) smaller than random variable Y if and only if Ef(X) ≤ Ef(Y )
for all increasing, concave and continuous functions f . Notation X ≤icv Y .

Both increasing order relations are related by X ≤icv Y ⇐⇒ −Y ≤icx −X and the increasing convex
order allows to be ”tested” by the special convex functions

fa(x) = (x− a)+ =

{
0, if x ≤ a
x− a, if x ≥ a.

These functions are sketched in figure 4 and their importance for the increasing convex order is given
in the next result whose proof is based on the dominated convergence theorem, see [MS, theorem 1.5.7,
p. 18]. The expectations used in this result are illustrated in figure 5.

Lemma 3 X ≤icx Y f and only if Efa(X) ≤ Efa(Y ) for all a ∈ IR.

Interestingly, equal expectations entail that the increasing convex order is identical to the convex order.

Lemma 4 When EX = EY then X ≤cx Y is equivalent to X ≤icx Y .

Proof. [Mö] or [S, p. 9]. �

Equality of expectations has an even deeper consequence, namely the equivalence of the Lorenz order
and the convex order [MOA, theorem C.8, p. 719]:
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Figure 4: Function f4(x).

Figure 5: The shaded area equals Efa(X) for F (x) = P (X ≤ x).

Theorem 3 (”Equivalence of Lorenz order and convex stochastic order for equal means”)
Let X,Y be random variables with Lorenz curves and EX = EY . Then X ≤L Y if and only if X ≤cx Y .

A consequence from the last theorem is that EX = EY and the Lorenz order X ≤L Y imply the
variance inequality V arX ≤ V arY . This follows from applying the convex order to the convex function
f(x) = (x− EX)2.

Anoter consequence from threorem 3 is that the single crossing condition by Karlin and Novikoff together
with identical mean values is a simple and sufficient condition for Lorenz order. The single crossing
condition for two distribution functions FX(x) and FY (x) states that there is at least one point x0 ∈ IR
such that FX(x) ≤ FY (x) for all x < x0 and FX(x) ≥ FY (x) for all x ≥ x0. The single crossing condition
together with EX = EY implies X ≤icx Y [MS]; EX ≤ EY together with the single crossing condition
suffices. Equality of the expectations further ensures X ≤cx Y and X ≤L Y .

The single crossing condition is not necessary for the increasing convex order, not even for identical expec-
tations and not even for natural distributions. An example is x = (5, 4, 3, 2)T and y = (4.5, 4.5, 2.5, 2.5)T .
Then y ≤m x so that the natural distributions satisfy FY ≤icx FX ; see theorem 1 and lemma 4. But the
distribution functions have more than one crossing as shown in figure 6.

2.3 An extension of ordinary Pigou-Dalton transfers to more complex dis-
tributions

As majorization corresponds to a finite sequence of Pigou-Dalton transfers, see lemma 1, a possibly
infinite process of Pigou-Dalton transfers will now be shown to lead from ”any” probability distribution
with finite expectation to ”any” other which is smaller in the sense of increasing convex order and which
has the same expectation.
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Figure 6: Natural distribution functions of x (four jumps) and of y (two jumps) without single crossing
property.

When vectors are cleverly constructed, they allow to represent all finite distributions with rational prob-
abilities as natural distributions. To see this, let a distribution have the probabilities P (X = xi) = pi =
ri/si with ri, si ∈ IN . With the least common multiple of the denominators S = lcm(s1, . . . , sn), the
probabilities can be rewritten as pi = Ri/S with Ri ∈ IN . Note that R1 + . . . + Rn = S. This allows to
consider the ”natural” vector x(X) with S coordinates having R1 repetitions of x1, R2 repetitions of x2
etc.

An example is P (X = 17) = 1/3, P (X = 19) = 1/6, P (X = 22) = 3/8, P (X = 25) = 1/8. Then
S = lcm(3, 6, 8) = 24 and P (X = 17) = 8/24, P (X = 19) = 4/24, P (X = 22) = 9/24, P (X = 25) = 3/24.
The natural vector of the distribution has 24 coordinates. Each can be thought of having probability 1/24.

x(X) = (17, . . . , 17︸ ︷︷ ︸
8 times

, 19, 19, 19, 19, 22, . . . , 22︸ ︷︷ ︸
9 times

, 25, 25, 25)T .

Instead of choosing S to be the least common multiple of all denominators, a multiple of S can be
chosen. This will increase the length of the vector and the number of coordinate repetitions. Using larger
vector lengths becomes important when two distributions are to be compared. The distributions may
have a different number of support points. Let P (X = xi) = ri/si with ri, si ∈ IN for i = 1, . . . , n
and P (Y = yj) = uj/vj with uj , vj ∈ IN for j = 1, . . . ,m. Then the length of the common natural
vectors of the two distributions can be chosen as S+ = lcm(s1, . . . , sn, v1, . . . , vm). The probabilities are
ri/si = Ri/S+ and uj/vj = Uj/S+. The common natural vectors are denoted as x(X,Y ) and y(X,Y ).

An example is P (X = x1) = 2/10, P (X = x2) = 4/10, P (X = x3) = 3/10, P (X = x4) = 1/10 and
P (Y = y1) = 1/3, P (Y = y2) = 1/3, P (Y = y3) = 1/3. Then S+ = lcm(10, 3) = 30 so that common
natural vectors can be chosen as

x(X,Y ) = (x1, . . . , x1︸ ︷︷ ︸
6 times

, x2, . . . , x2︸ ︷︷ ︸
12 times

, x3, . . . , x3︸ ︷︷ ︸
9 times

, x4, x4, x4︸ ︷︷ ︸
3 times

)T

y(X,Y ) = (y1, . . . , y1︸ ︷︷ ︸
10 times

, y2, . . . , y2︸ ︷︷ ︸
10 times

, y3, . . . , y3︸ ︷︷ ︸
10 times

)T .

Lemma 5 Let EX = EY and let the two distributions have rational probabilities P (X = xi) = pi > 0,
i = 1, . . . , n and P (Y = yi) = qi > 0, j = 1, . . . ,m. Then PX ≤icx P

Y if and only if x(X,Y ) ≤m y(X,Y ).

Proof. The distributions are the natural distributions of x(X,Y ) and y(X,Y ), respectively. Thus x(X,Y )
≤m y(X,Y ) is equivalent to PX ≤cx PY according to theorem 1 and PX ≤cx PY is equivalent to
PX ≤icx P

Y according to lemma 4. �
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A consequence of the foregoing lemma is that a finite sequence of Pigou-Dalton transfers leads from the
larger to the smaller distribution, comp. lemma 1. All these transfers refer to natural vectors with same
number of coordinates. Extension to more general distributions involve approximations. A core result
towards these approximations allows to handle irrational probabilities.

Lemma 6 (”Replacement with rational probabilities”)
For any finite distribution with arbitrary probabilities there exist two finite distributions which (1) have
the same expected value as the original distribution, (2) have rational probabilities only and are (3a) larger
resp. (3b) smaller than the original distribution in increasing convex order.

Both finite distributions with rational probabilities have only one support point more than the original
distribution. The construction is tedious but elementary and transfers all irrationalities from the prob-
abilities to the additional support point. A slight modification of the construction allows all but one
support point to become rational. The latter, however, will not be needed here.

Proof of lemma 6. Let the given probabilities be P (X = xi) = pi for sorted support points x1 < . . . < xn.
All probabilities except for the largest support point are approximated from below by rational values
q1, . . . , qn−1, see figure 7. This will affect the contributions to the expected value by

A1 = (x2 − x1) · (q1 − p1)

A2 = (x3 − x2) · (q1 + q2 − (p1 + p2))

...

An−2 = (xn−1 − xn−2) · (q1 + . . .+ qn−2 − (p1 + . . .+ pn−2))

Now, another rational probability value qn < 1 is chosen such that

1. p1 + . . .+ pn−1 < q1 + . . . qn−2 + qn and

2. A1 + . . .+An−2 < (xn − xn−1) · (q1 + . . .+ qn−2 + qn − (p1 + . . .+ pn−1))

If necessary for the two last inequalities to be valid, the formerly picked rational values are set closer to
the original probability values. An additional support point x0 ∈ (xn−1, xn) is now picked such that

A1+. . .+An−2+(x0−xn−1)·(p1+. . .+pn−1−(q1+. . .+qn−1)) = (xn−x0)·(q1+. . .+qn−(p1+. . .+pn−1))

for a suitable rational probability qn−1. Such an additional support point and a suitable rational prob-
ability always exists due to continuity. The last equation ensures equality of the expectations and the
single crossing conditions ensures that the approximating distribution is increasingly convex smaller than
the original distribution.

An increasingly convex larger distribution is obtained by approximating the first n−2 constant segments
from above and the final segment from above and from below. �

The approximation of irrational probabilities by rational probabilities can be made arbitrarily fine so
that rational approximations can be made to converge towards the given distribution with finite support.
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Figure 7: Original distribution function and increasingly convex smaller distribution function with iden-
tical expectation and rational levels only.

Lemma 7 (”Converging replacements with rational probabilities”)
For any finite distribution with arbitrary probabilities there exist two sequences of finite distributions which
(1) all have the same expected value as the original distribution, (2) have rational probabilities only, are
(3a) larger resp. (3b) smaller than the original distribution in increasing convex order and (4) converge
in distribution towards the given distribution.

Proof (sketch only). Starting with a distribution as given in the prof of lemma 6, the approximation of
all given probabilites can be made arbitrarily fine as, for example, by the settings

q
(N)
i − pi =

1

10N
· (qi − pi), i = 1, . . . , n− 2,

q
(N)
n−1 − pn−1 =

1

10N
· (qn−1 − pn−1),

q(N)
n − pn−1 =

1

10N
· (qn − pn−1).

The sequence of these finite distributions converges towards the given distribution in all continuity points
of the given distribution function. In particular, the additional support point x0 is the same for all
approximations and its limiting probability is zero. �

An important convergence result which indicates ”approximate applicability” of Pigou-Dalton transfers
to continuous distributions is the following theorem, see [MS, theorem 1.5.30, p. 30].

Theorem 4 Let X ≤cx Y . Then there exists sequences of random variables Xn and Yn such that (1)
Xn ≤cx Yn for all n, (2) EXn = EX, EYn = EY for all n, (3) Xn → X and Yn → Y in distribution
and (4) all Xn and all Yn have finite support.

The convergence result is now considered for the special case EX = EY so that ≤icx and ≤cx are
equivalent. Asymptotically, X ≤icx Y are then replaced by Xn ≤icx Yn as of theorem 4. Lemma 7
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then implies the existence of distributions X∗n and Y ∗n with X∗n ≤icx Xn ≤icx Yn ≤icx Y ∗n . All four
distributions have the same expectations and the outer have finite support with rational probabilities
only. Thus, Pigou-Dalton transfers can be applied to one of the outer distributions to result in the other.
This is understood as applying Pigou-Dalton transfers to the arbitrary distributions X and Y .

The drawback of the convergence result from theorem 4 is that convergence in distribution only guaran-
tees pointwise convergence of the approximating distribution functions at continuity points of the limit
function. When values at discontinuity points matter, the approximations and, hence the Pigou-Dalton
transfers may not refer to the proper income values. This is remedied by strengthening the convergence re-
sult to hold, also, in an arbitrary finite collection of discontinuity points of the limit distribution function.
Therefore, the orignal construction from the proof of theorem 4 is modified. To keep that modification
as simple as possible, only random variables with non-negative values are considered.

Theorem 5 Let X and Y attain non-negative values only with X ≤cx Y and let p∗ ∈ (0, 1). Then there
exists sequences of random variables Xn and Yn such that (1) Xn ≤cx Yn for all n, (2) EXn = EX,
EYn = EY for all n, (3) Xn → X and Yn → Y in distribution and (4) all Xn and all Yn have
finite support. The convergence holds, also, pointwise for the distribution functions in all finite many
discontinuity points of FX(x) and FY (x) with possible exception of all jumps whose sizes sum to a value
below p∗.

Proof (Modification of the proof for theorem 1.5.30 [MS, p. 30-31]). For the survival functions P (X >
x) = 1− FX(x) and P (Y > x) = 1− FY (x) the integrated survival functions πX(x) =

∫∞
x

P (X > u) du

and πY (x) =
∫∞
x

P (Y > u) du are decreasing and convex. Moreover, they denote the expected values
by πX(0) = EX and πY (0) = EY , see figure 8. By (left-side and right-side) derivation, the distribution
function can be retained from the integrated survival function. A jump of a distribution function or a
survival function (which is equivalent) corresponds to a jump of the same size in slope of the integrated
survival function, see figure 9.

As EX = EY , X ≤cx Y is equivalent to πX(x) ≤ πY (x) for all x ≥ 0. Approximations of the integrated
survival functions which maintain the pointwise order will then result in random variables which are
ordered in the convex sense.

Now

πXn
(x) = max{0, EX − x, φ1(x), . . . , φn(x)}

πYn
(x) = max{0, EY − x, ψ1(x), . . . , ψn(x)}

where {φ1(x), φ2(x), . . .} is a countable set of linearly decreasing support functions of πX(x) which con-
tains two functions for each discontinuity point of FX(x) with jump size exceeding p∗. The two functions
for each such discontinuity point have the extreme slopes as in figure 9. Similarly, {ψ1(x), ψ2(x), . . .} is
a countable set of linearly decreasing support functions of πY (x) which contains two functions for each
discontinuity point of FY (x) with jump size exceeding p∗.

Convexity of the integrated survival functions of X and Y ensures that all supporting linear functions
lie below them. Hence πXn

(0) = max{0, EX, φ1(0), . . . , φn(0)} = EX = πX(0) so that EXn = EX.
Similarly, EYn = EY . The desired convergence and order properties follow from dominated convergence
as in [MS]. �

It appears that theorem 5 can be strengthened such that all approximating random distributions have
rational jump heights only. This issue has not been investigated here.

2.4 A probabilistic version of Pigou-Dalton transfers

The single crossing condition also enables probabilistic versions of Pigou-Dalton transfers. Such transfers
will refer to probability of certain incomes rather than to incomes directly. Conceptually, probabilistic
Pigou-Dalton transfers are more complicated than their ordinary counterparts but working with them
in a probabilistic context is much simpler. As a preparatory step, an ordinary Pigou-Dalton transfer is
expressed in terms of distributions. Consider the sample transfer
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Figure 8: The expected value (shaded areas) is computable by integration over the distribution function
as well as over the survival function.

Figure 9: A jump of size p0 of the distribution function or survival function corresponds to a jump in
slope of size p0 of the integrated survival function. The jump in slope is expressed by two linear functions
which support the convex function at the same location with right and left slopes differing by p0.
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The effect of this transfer on the natural distribution functions is sketched in figure 10. A value transfer
becomes a transfer of probability. Moreover, the single crossing condition implies that the distribution
after transfer is the increasing convex smaller of the two. This perspective allows a distributional view
that is no longer attached to vectors.

-

6

2 3 4 7 8 10
x0

1

−
+

Figure 10: Natural distribution functions of an ordinary Pigou-Dalton transfer and crossing point x0
showing that the majorized vector belongs to the smaller distribution in the increasing convex order.

When some amount of probability of an arbitrary distribution function is shifted towards smaller values
such that expectations remain identical, then the distribution after transfer is increasingly convex smaller
than the original distribution, see figure 11. Though transfers may ”enclose” the expectation, this need
not be so and suitable transfers result in the one-point distribution at the expectation being the smallest
distribution in increasing convex order which can be obtained by probabilistic Pigou-Dalton transfers.

-

6

x0 EX1 = EX2

F1

−

+

F2

Figure 11: Distribution F2 is smaller than distribution F1 in increasing convex order according to the
single crossing condition. The point x0 required for the condition may be any point between the transfer
sections. The upper transfer section ”encloses” the common expected value.

2.5 Further issue

An equivalence to the Lorenz order without equality of expectations can be obtained from the harmonic
new better than used in expectation order from reliability analysis.
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Definition 5 Let 0 < EX,EY < ∞. Then the harmonic new better than used in expectation HNBUE

order is defined by the condition 1
EX

∫∞
x

P (X > t) dt ≤ 1
EY

∫∞
x

P (Y > t) dt for all x > 0. Notation
X ≤HNBUE Y .

Theorem 6 (”Equivalence of Lorenz order and HNBUE order even for unequal means ”)
X ≤HNBUE Y if and only if X ≤cx Y .

Proof. See [BoBe, theorem 5]. �

3 Partial orders, Lorenz curves and income distributions

The relation between the Lorenz order and majorization for income distribution has been formulated by
the Atkinson theorem. It refers to finite distributions but can easily be extended to other distributions
when applying several of the foregoing results. For clarity, the Atkinson theorem is stated for finite
distributions and is then extended. The proof of the extended case covers the original formulation

Theorem 7 (”Atkinson theorem”)
Let X and Y be finite distributions with equal expectations. Then X ≤L Y if and only if X ≥icv Y .

Theorem 8 (”Extended Atkinson theorem”)
Let X and Y be distributions with finite, equal expectations. Then X ≤L Y if and only if X ≥icv Y .

Proof. Equality of the expectations admits the following equivalences

X ≤L Y ⇐⇒ X ≤cx Y

⇐⇒ Y ≤cv X

⇐⇒ Y ≤icv X

The first equivalence follows from theorem 3, the second from the general relation between the convex
and concave orderings and the last from lemma 3.2. �

As a consequence of Atkinson’s theorem and its extension, a distribution being less uneven than another
in the sense X ≤L Y but with same mean value is equivalent to Ef(X) ≥ Ef(Y ) for all increasing
and concave functions. The integration functions are sometimes called welfare functions in relation to
Atkinson’s theorem. It should be noted that the Lorenz order is equivalent to the concave order so that
the welfare functions need not be increasing but concave only. Yet, this relaxation may have a limited
economical meaning.
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